Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Yang Mills Measure On Compact Surfaces
Download Yang Mills Measure On Compact Surfaces full books in PDF, epub, and Kindle. Read online Yang Mills Measure On Compact Surfaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Yang-Mills Measure on Compact Surfaces by : Thierry Lévy
Download or read book Yang-Mills Measure on Compact Surfaces written by Thierry Lévy and published by American Mathematical Soc.. This book was released on 2003 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this memoir we present a new construction and new properties of the Yang-Mills measure in two dimensions. This measure was first introduced for the needs of quantum field theory and can be described informally as a probability measure on the space of connections modulo gauge transformations on a principal bundle. We consider the case of a bundle over a compact orientable surface. Our construction is based on the discrete Yang-Mills theory of which we give a full acount. We are able to take its continuum limit and to define a pathwise multiplicative process of random holonomy indexed by the class of piecewise embedded loops. We study in detail the links between this process and a white noise and prove a result of asymptotic independence in the case of a semi-simple structure group. We also investigate global Markovian properties of the measure related to the surgery of surfaces.
Book Synopsis Gauge Theory on Compact Surfaces by : Ambar Sengupta
Download or read book Gauge Theory on Compact Surfaces written by Ambar Sengupta and published by American Mathematical Soc.. This book was released on 1997 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we develop a concrete description of connections on principal bundles, possibly non-trivial, over compact surfaces and use this description to construct the Yang-Mills measure which underlies the Euclidean quantum theory of gauge fields, involving compact gauge groups, on compact connected two-dimensional Riemannian manifolds (possibly with boundary). Using this measure we compute expectation values of important random variables, the Wilson loops variables, corresponding to a broad class of configurations of loops on the surface.
Book Synopsis Stochastic Geometric Mechanics by : Sergio Albeverio
Download or read book Stochastic Geometric Mechanics written by Sergio Albeverio and published by Springer. This book was released on 2017-11-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled “Geometric mechanics – variational and stochastic methods” run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Fédérale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics and its applications, building bridges among the various communities involved and working jointly on developing the envisaged new interdisciplinary subject of stochastic geometric mechanics.
Book Synopsis Chern-Simons Gauge Theory: 20 Years After by : Jørgen E. Andersen
Download or read book Chern-Simons Gauge Theory: 20 Years After written by Jørgen E. Andersen and published by American Mathematical Soc.. This book was released on 2011 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1989, Edward Witten discovered a deep relationship between quantum field theory and knot theory, and this beautiful discovery created a new field of research called Chern-Simons theory. This field has the remarkable feature of intertwining a large number of diverse branches of research in mathematics and physics, among them low-dimensional topology, differential geometry, quantum algebra, functional and stochastic analysis, quantum gravity, and string theory. The 20-year anniversary of Witten's discovery provided an opportunity to bring together researchers working in Chern-Simons theory for a meeting, and the resulting conference, which took place during the summer of 2009 at the Max Planck Institute for Mathematics in Bonn, included many of the leading experts in the field. This volume documents the activities of the conference and presents several original research articles, including another monumental paper by Witten that is sure to stimulate further activity in this and related fields. This collection will provide an excellent overview of the current research directions and recent progress in Chern-Simons gauge theory.
Book Synopsis Stochastic Analysis In Mathematical Physics - Proceedings Of A Satellite Conference Of Icm 2006 by : Gerard Ben Arous
Download or read book Stochastic Analysis In Mathematical Physics - Proceedings Of A Satellite Conference Of Icm 2006 written by Gerard Ben Arous and published by World Scientific. This book was released on 2007-12-31 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come./a
Book Synopsis Stochastic Analysis in Mathematical Physics by : Gerard Ben Arous
Download or read book Stochastic Analysis in Mathematical Physics written by Gerard Ben Arous and published by World Scientific. This book was released on 2008 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come.
Book Synopsis Quantization of Singular Symplectic Quotients by : N.P. Landsman
Download or read book Quantization of Singular Symplectic Quotients written by N.P. Landsman and published by Birkhäuser. This book was released on 2012-12-06 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.
Book Synopsis Quantum and Stochastic Mathematical Physics by : Astrid Hilbert
Download or read book Quantum and Stochastic Mathematical Physics written by Astrid Hilbert and published by Springer Nature. This book was released on 2023-04-02 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Book Synopsis Differential Geometry: Geometry in Mathematical Physics and Related Topics by : Robert Everist Greene
Download or read book Differential Geometry: Geometry in Mathematical Physics and Related Topics written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1993 with total page 681 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Among the subjects of Part 2 are gauge theory, symplectic geometry, complex ge
Book Synopsis Stochastic Analysis and Applications in Physics by : Ana Isabel Cardoso
Download or read book Stochastic Analysis and Applications in Physics written by Ana Isabel Cardoso and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Funchal, Madeira, Portugal, August 6--19, 1993
Book Synopsis Probability and Analysis in Interacting Physical Systems by : Peter Friz
Download or read book Probability and Analysis in Interacting Physical Systems written by Peter Friz and published by Springer. This book was released on 2019-05-24 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift on the occasion of the 75th birthday of S.R.S. Varadhan, one of the most influential researchers in probability of the last fifty years, grew out of a workshop held at the Technical University of Berlin, 15–19 August, 2016. This volume contains ten research articles authored by several of Varadhan's former PhD students or close collaborators. The topics of the contributions are more or less closely linked with some of Varadhan's deepest interests over the decades: large deviations, Markov processes, interacting particle systems, motions in random media and homogenization, reaction-diffusion equations, and directed last-passage percolation. The articles present original research on some of the most discussed current questions at the boundary between analysis and probability, with an impact on understanding phenomena in physics. This collection will be of great value to researchers with an interest in models of probability-based statistical mechanics.
Book Synopsis Xivth International Congress On Mathematical Physics by : Jean-claude Zambrini
Download or read book Xivth International Congress On Mathematical Physics written by Jean-claude Zambrini and published by World Scientific. This book was released on 2006-03-07 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2003 the XIV International Congress on Mathematical Physics (ICMP) was held in Lisbon with more than 500 participants. Twelve plenary talks were given in various fields of Mathematical Physics: E Carlen «On the relation between the Master equation and the Boltzmann Equation in Kinetic Theory»; A Chenciner «Symmetries and “simple” solutions of the classical n-body problem»; M J Esteban «Relativistic models in atomic and molecular physics»; K Fredenhagen «Locally covariant quantum field theory»; K Gawedzki «Simple models of turbulent transport»; I Krichever «Algebraic versus Liouville integrability of the soliton systems»; R V Moody «Long-range order and diffraction in mathematical quasicrystals»; S Smirnov «Critical percolation and conformal invariance»; J P Solovej «The energy of charged matter»; V Schomerus «Strings through the microscope»; C Villani «Entropy production and convergence to equilibrium for the Boltzmann equation»; D Voiculescu «Aspects of free probability».The book collects as well carefully selected invited Session Talks in: Dynamical Systems, Integrable Systems and Random Matrix Theory, Condensed Matter Physics, Equilibrium Statistical Mechanics, Quantum Field Theory, Operator Algebras and Quantum Information, String and M Theory, Fluid Dynamics and Nonlinear PDE, General Relativity, Nonequilibrium Statistical Mechanics, Quantum Mechanics and Spectral Theory, Path Integrals and Stochastic Analysis.
Book Synopsis Frontiers in Analysis and Probability by : Nalini Anantharaman
Download or read book Frontiers in Analysis and Probability written by Nalini Anantharaman and published by Springer Nature. This book was released on 2020-11-21 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume presents extensive research devoted to a broad spectrum of mathematical analysis and probability theory. Subjects discussed in this Work are those treated in the so-called Strasbourg–Zürich Meetings. These meetings occur twice yearly in each of the cities, Strasbourg and Zürich, venues of vibrant mathematical communication and worldwide gatherings. The topical scope of the book includes the study of monochromatic random waves defined for general Riemannian manifolds, notions of entropy related to a compact manifold of negative curvature, interacting electrons in a random background, lp-cohomology (in degree one) of a graph and its connections with other topics, limit operators for circular ensembles, polyharmonic functions for finite graphs and Markov chains, the ETH-Approach to Quantum Mechanics, 2-dimensional quantum Yang–Mills theory, Gibbs measures of nonlinear Schrödinger equations, interfaces in spectral asymptotics and nodal sets. Contributions in this Work are composed by experts from the international community, who have presented the state-of-the-art research in the corresponding problems treated. This volume is expected to be a valuable resource to both graduate students and research mathematicians working in analysis, probability as well as their interconnections and applications.
Book Synopsis Stochastic Analysis and Mathematical Physics (SAMP/ANESTOC 2002) by : Richard Phillips Feynman
Download or read book Stochastic Analysis and Mathematical Physics (SAMP/ANESTOC 2002) written by Richard Phillips Feynman and published by World Scientific. This book was released on 2004 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects a series of papers centered on two main streams: Feynman path integral approach to Quantum Mechanics and statistical mechanics of quantum open systems. Key authors discuss the state-of-the-art within their fields of expertise. In addition, the volume includes a number of contributed papers with new results, which have been thoroughly refereed. The contributions in this volume highlight emergent research in the area of stochastic analysis and mathematical physics, focusing, in particular on Feynman functional integral approach and, on the other hand, in quantum probability. The book is addressed to an audience of mathematical physicists, as well as specialists in probability theory, stochastic analysis and operator algebras. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
Book Synopsis The Yang-Mills Measure for the Two-sphere by : Ambar Sengupta
Download or read book The Yang-Mills Measure for the Two-sphere written by Ambar Sengupta and published by . This book was released on 1990 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Conformal and Harmonic Measures on Laminations Associated with Rational Maps by : Vadim A. Kaimanovich
Download or read book Conformal and Harmonic Measures on Laminations Associated with Rational Maps written by Vadim A. Kaimanovich and published by American Mathematical Soc.. This book was released on 2005 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$. Our work explores natural ``geometric'' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse ``conformal streams'' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the ``Anosov--Sinai cocycle'', the corresponding ``basic cohomology class'' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$. A number of related geometric objects on laminations -- in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion -- are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97]. Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).
Book Synopsis Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance by : Marc Aristide Rieffel
Download or read book Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance written by Marc Aristide Rieffel and published by American Mathematical Soc.. This book was released on 2004 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: By a quantum metric space we mean a $C DEGREES*$-algebra (or more generally an order-unit space) equipped with a generalization of the usual Lipschitz seminorm on functions which one associates to an ordinary metric. We develop for compact quantum metric spaces a version of Gromov-Hausdorff di