Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Introduction To Singularities And Deformations
Download Introduction To Singularities And Deformations full books in PDF, epub, and Kindle. Read online Introduction To Singularities And Deformations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to Singularities and Deformations by : Gert-Martin Greuel
Download or read book Introduction to Singularities and Deformations written by Gert-Martin Greuel and published by Springer Science & Business Media. This book was released on 2007-02-23 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Book Synopsis Introduction to Singularities by : Shihoko Ishii
Download or read book Introduction to Singularities written by Shihoko Ishii and published by Springer. This book was released on 2014-11-19 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.
Book Synopsis Deformations of Algebraic Schemes by : Edoardo Sernesi
Download or read book Deformations of Algebraic Schemes written by Edoardo Sernesi and published by Springer Science & Business Media. This book was released on 2007-04-20 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This account of deformation theory in classical algebraic geometry over an algebraically closed field presents for the first time some results previously scattered in the literature, with proofs that are relatively little known, yet relevant to algebraic geometers. Many examples are provided. Most of the algebraic results needed are proved. The style of exposition is kept at a level amenable to graduate students with an average background in algebraic geometry.
Book Synopsis Isomonodromic Deformations and Frobenius Manifolds by : Claude Sabbah
Download or read book Isomonodromic Deformations and Frobenius Manifolds written by Claude Sabbah and published by Springer Science & Business Media. This book was released on 2007-12-20 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.
Book Synopsis Deformations of singularities by : Jan Stevens
Download or read book Deformations of singularities written by Jan Stevens and published by Springer Science & Business Media. This book was released on 2003 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Singularities by : Shihoko Ishii
Download or read book Introduction to Singularities written by Shihoko Ishii and published by Springer. This book was released on 2018-09-21 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to singularities for graduate students and researchers. Algebraic geometry is said to have originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. First, mostly non-singular varieties were studied. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dimensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied. In the second edition, brief descriptions about recent remarkable developments of the researches are added as the last chapter.
Book Synopsis Singularities of the Minimal Model Program by : János Kollár
Download or read book Singularities of the Minimal Model Program written by János Kollár and published by Cambridge University Press. This book was released on 2013-02-21 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative reference and the first comprehensive treatment of the singularities of the minimal model program.
Book Synopsis Deformation Theory by : Robin Hartshorne
Download or read book Deformation Theory written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2009-11-12 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.
Book Synopsis Mixed Hodge Structures and Singularities by : Valentine S. Kulikov
Download or read book Mixed Hodge Structures and Singularities written by Valentine S. Kulikov and published by Cambridge University Press. This book was released on 1998-04-27 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This vital work is both an introduction to, and a survey of singularity theory, in particular, studying singularities by means of differential forms. Here, some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss-Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This is an excellent resource for all researchers in singularity theory, algebraic or differential geometry.
Book Synopsis Sheaves in Topology by : Alexandru Dimca
Download or read book Sheaves in Topology written by Alexandru Dimca and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Constructible and perverse sheaves are the algebraic counterpart of the decomposition of a singular space into smooth manifolds. This introduction to the subject can be regarded as a textbook on modern algebraic topology, treating the cohomology of spaces with sheaf (as opposed to constant) coefficients. The author helps readers progress quickly from the basic theory to current research questions, thoroughly supported along the way by examples and exercises.
Book Synopsis Singularities of Differentiable Maps by : V.I. Arnold
Download or read book Singularities of Differentiable Maps written by V.I. Arnold and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: ... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Book Synopsis Frobenius Manifolds and Moduli Spaces for Singularities by : Claus Hertling
Download or read book Frobenius Manifolds and Moduli Spaces for Singularities written by Claus Hertling and published by Cambridge University Press. This book was released on 2002-07-25 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory of Frobenius manifolds, as well as all the necessary tools and several applications.
Book Synopsis A Singular Introduction to Commutative Algebra by : Gert-Martin Greuel
Download or read book A Singular Introduction to Commutative Algebra written by Gert-Martin Greuel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book can be understood as a model for teaching commutative algebra, and takes into account modern developments such as algorithmic and computational aspects. As soon as a new concept is introduced, the authors show how the concept can be worked on using a computer. The computations are exemplified with the computer algebra system Singular, developed by the authors. Singular is a special system for polynomial computation with many features for global as well as for local commutative algebra and algebraic geometry. The book includes a CD containing Singular as well as the examples and procedures explained in the book.
Book Synopsis Singular Algebraic Curves by : Gert-Martin Greuel
Download or read book Singular Algebraic Curves written by Gert-Martin Greuel and published by Springer. This book was released on 2018-12-30 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry. The monograph suggests a unified approach to the geometry of singular algebraic curves on algebraic surfaces and their families, which applies to arbitrary singularities, allows one to treat all main questions concerning the geometry of equisingular families of curves, and, finally, leads to results which can be viewed as the best possible in a reasonable sense. Various methods of the cohomology vanishing theory as well as the patchworking construction with its modifications will be of a special interest for experts in algebraic geometry and singularity theory. The introductory chapters on zero-dimensional schemes and global deformation theory can well serve as a material for special courses and seminars for graduate and post-graduate students.Geometry in general plays a leading role in modern mathematics, and algebraic geometry is the most advanced area of research in geometry. In turn, algebraic curves for more than one century have been the central subject of algebraic geometry both in fundamental theoretic questions and in applications to other fields of mathematics and mathematical physics. Particularly, the local and global study of singular algebraic curves involves a variety of methods and deep ideas from geometry, analysis, algebra, combinatorics and suggests a number of hard classical and newly appeared problems which inspire further development in this research area.
Book Synopsis Isolated Singular Points on Complete Intersections by : Eduard Looijenga
Download or read book Isolated Singular Points on Complete Intersections written by Eduard Looijenga and published by Cambridge University Press. This book was released on 1984-03 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will be of use to professional mathematicians working in algebraic geometry, complex-analytical geometry and, to some extent, differential analysis.
Book Synopsis Computations in Algebraic Geometry with Macaulay 2 by : David Eisenbud
Download or read book Computations in Algebraic Geometry with Macaulay 2 written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.
Author :Camille Laurent-Gengoux Publisher :Springer Science & Business Media ISBN 13 :3642310907 Total Pages :470 pages Book Rating :4.6/5 (423 download)
Book Synopsis Poisson Structures by : Camille Laurent-Gengoux
Download or read book Poisson Structures written by Camille Laurent-Gengoux and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.