Statistical Analysis of Next Generation Sequencing Data

Download Statistical Analysis of Next Generation Sequencing Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319379050
Total Pages : 0 pages
Book Rating : 4.3/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Next Generation Sequencing Data by : Somnath Datta

Download or read book Statistical Analysis of Next Generation Sequencing Data written by Somnath Datta and published by Springer. This book was released on 2016-09-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Handbook of Statistical Genomics

Download Handbook of Statistical Genomics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119429250
Total Pages : 1740 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Genomics by : David J. Balding

Download or read book Handbook of Statistical Genomics written by David J. Balding and published by John Wiley & Sons. This book was released on 2019-07-09 with total page 1740 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely update of a highly popular handbook on statistical genomics This new, two-volume edition of a classic text provides a thorough introduction to statistical genomics, a vital resource for advanced graduate students, early-career researchers and new entrants to the field. It introduces new and updated information on developments that have occurred since the 3rd edition. Widely regarded as the reference work in the field, it features new chapters focusing on statistical aspects of data generated by new sequencing technologies, including sequence-based functional assays. It expands on previous coverage of the many processes between genotype and phenotype, including gene expression and epigenetics, as well as metabolomics. It also examines population genetics and evolutionary models and inference, with new chapters on the multi-species coalescent, admixture and ancient DNA, as well as genetic association studies including causal analyses and variant interpretation. The Handbook of Statistical Genomics focuses on explaining the main ideas, analysis methods and algorithms, citing key recent and historic literature for further details and references. It also includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between chapters, tying the different areas together. With heavy use of up-to-date examples and references to web-based resources, this continues to be a must-have reference in a vital area of research. Provides much-needed, timely coverage of new developments in this expanding area of study Numerous, brand new chapters, for example covering bacterial genomics, microbiome and metagenomics Detailed coverage of application areas, with chapters on plant breeding, conservation and forensic genetics Extensive coverage of human genetic epidemiology, including ethical aspects Edited by one of the leading experts in the field along with rising stars as his co-editors Chapter authors are world-renowned experts in the field, and newly emerging leaders. The Handbook of Statistical Genomics is an excellent introductory text for advanced graduate students and early-career researchers involved in statistical genetics.

RNA-seq Data Analysis

Download RNA-seq Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466595019
Total Pages : 314 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis RNA-seq Data Analysis by : Eija Korpelainen

Download or read book RNA-seq Data Analysis written by Eija Korpelainen and published by CRC Press. This book was released on 2014-09-19 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The State of the Art in Transcriptome AnalysisRNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript le

Gene Expression Data Analysis

Download Gene Expression Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000425754
Total Pages : 276 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Gene Expression Data Analysis by : Pankaj Barah

Download or read book Gene Expression Data Analysis written by Pankaj Barah and published by CRC Press. This book was released on 2021-11-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of high-throughput technologies in molecular biology during the last two decades has contributed to the production of tremendous amounts of data. Microarray and RNA sequencing are two such widely used high-throughput technologies for simultaneously monitoring the expression patterns of thousands of genes. Data produced from such experiments are voluminous (both in dimensionality and numbers of instances) and evolving in nature. Analysis of huge amounts of data toward the identification of interesting patterns that are relevant for a given biological question requires high-performance computational infrastructure as well as efficient machine learning algorithms. Cross-communication of ideas between biologists and computer scientists remains a big challenge. Gene Expression Data Analysis: A Statistical and Machine Learning Perspective has been written with a multidisciplinary audience in mind. The book discusses gene expression data analysis from molecular biology, machine learning, and statistical perspectives. Readers will be able to acquire both theoretical and practical knowledge of methods for identifying novel patterns of high biological significance. To measure the effectiveness of such algorithms, we discuss statistical and biological performance metrics that can be used in real life or in a simulated environment. This book discusses a large number of benchmark algorithms, tools, systems, and repositories that are commonly used in analyzing gene expression data and validating results. This book will benefit students, researchers, and practitioners in biology, medicine, and computer science by enabling them to acquire in-depth knowledge in statistical and machine-learning-based methods for analyzing gene expression data. Key Features: An introduction to the Central Dogma of molecular biology and information flow in biological systems A systematic overview of the methods for generating gene expression data Background knowledge on statistical modeling and machine learning techniques Detailed methodology of analyzing gene expression data with an example case study Clustering methods for finding co-expression patterns from microarray, bulkRNA, and scRNA data A large number of practical tools, systems, and repositories that are useful for computational biologists to create, analyze, and validate biologically relevant gene expression patterns Suitable for multidisciplinary researchers and practitioners in computer science and the biological sciences

Computational Genomics with R

Download Computational Genomics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498781861
Total Pages : 463 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Genomics with R by : Altuna Akalin

Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Download Bioinformatics and Computational Biology Solutions Using R and Bioconductor PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387293620
Total Pages : 478 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics and Computational Biology Solutions Using R and Bioconductor by : Robert Gentleman

Download or read book Bioinformatics and Computational Biology Solutions Using R and Bioconductor written by Robert Gentleman and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

Next-Generation Sequencing Data Analysis

Download Next-Generation Sequencing Data Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482217899
Total Pages : 252 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Next-Generation Sequencing Data Analysis by : Xinkun Wang

Download or read book Next-Generation Sequencing Data Analysis written by Xinkun Wang and published by CRC Press. This book was released on 2016-04-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi

RNA-Seq Analysis: Methods, Applications and Challenges

Download RNA-Seq Analysis: Methods, Applications and Challenges PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889637050
Total Pages : 169 pages
Book Rating : 4.8/5 (896 download)

DOWNLOAD NOW!


Book Synopsis RNA-Seq Analysis: Methods, Applications and Challenges by : Filippo Geraci

Download or read book RNA-Seq Analysis: Methods, Applications and Challenges written by Filippo Geraci and published by Frontiers Media SA. This book was released on 2020-06-08 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Statistical Methods for Meta-Analysis

Download Statistical Methods for Meta-Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080570658
Total Pages : 392 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Meta-Analysis by : Larry V. Hedges

Download or read book Statistical Methods for Meta-Analysis written by Larry V. Hedges and published by Academic Press. This book was released on 2014-06-28 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.

Deep Sequencing Data Analysis

Download Deep Sequencing Data Analysis PDF Online Free

Author :
Publisher : Humana Press
ISBN 13 : 9781627035132
Total Pages : 0 pages
Book Rating : 4.0/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Deep Sequencing Data Analysis by : Noam Shomron

Download or read book Deep Sequencing Data Analysis written by Noam Shomron and published by Humana Press. This book was released on 2013-07-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new genetic revolution is fuelled by Deep Sequencing (or Next Generation Sequencing) apparatuses which, in essence, read billions of nucleotides per reaction. Effectively, when carefully planned, any experimental question which can be translated into reading nucleic acids can be applied.In Deep Sequencing Data Analysis, expert researchers in the field detail methods which are now commonly used to study the multi-facet deep sequencing data field. These included techniques for compressing of data generated, Chromatin Immunoprecipitation (ChIP-seq), and various approaches for the identification of sequence variants. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of necessary materials and reagents, step-by-step, readily reproducible protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Deep Sequencing Data Analysis seeks to aid scientists in the further understanding of key data analysis procedures for deep sequencing data interpretation.

Statistical Genomics

Download Statistical Genomics PDF Online Free

Author :
Publisher : Humana
ISBN 13 : 9781493935765
Total Pages : 0 pages
Book Rating : 4.9/5 (357 download)

DOWNLOAD NOW!


Book Synopsis Statistical Genomics by : Ewy Mathé

Download or read book Statistical Genomics written by Ewy Mathé and published by Humana. This book was released on 2016-03-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume expands on statistical analysis of genomic data by discussing cross-cutting groundwork material, public data repositories, common applications, and representative tools for operating on genomic data. Statistical Genomics: Methods and Protocols is divided into four sections. The first section discusses overview material and resources that can be applied across topics mentioned throughout the book. The second section covers prominent public repositories for genomic data. The third section presents several different biological applications of statistical genomics, and the fourth section highlights software tools that can be used to facilitate ad-hoc analysis and data integration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible analysis protocols, and tips on troubleshooting and avoiding known pitfalls. Through and practical, Statistical Genomics: Methods and Protocols, explores a range of both applications and tools and is ideal for anyone interested in the statistical analysis of genomic data.

Statistical Analysis of Gene Expression Microarray Data

Download Statistical Analysis of Gene Expression Microarray Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203011236
Total Pages : 237 pages
Book Rating : 4.2/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Gene Expression Microarray Data by : Terry Speed

Download or read book Statistical Analysis of Gene Expression Microarray Data written by Terry Speed and published by CRC Press. This book was released on 2003-03-26 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies

Optimal Bayesian Classification

Download Optimal Bayesian Classification PDF Online Free

Author :
Publisher :
ISBN 13 : 9781510630697
Total Pages : pages
Book Rating : 4.6/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Optimal Bayesian Classification by : Lori A. Dalton

Download or read book Optimal Bayesian Classification written by Lori A. Dalton and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "The most basic problem of engineering is the design of optimal operators. Design takes different forms depending on the random process constituting the scientific model and the operator class of interest. This book treats classification, where the underlying random process is a feature-label distribution, and an optimal operator is a Bayes classifier, which is a classifier minimizing the classification error. With sufficient knowledge we can construct the feature-label distribution and thereby find a Bayes classifier. Rarely, do we possess such knowledge. On the other hand, if we had unlimited data, we could accurately estimate the feature-label distribution and obtain a Bayes classifier. Rarely do we possess sufficient data. The aim of this book is to best use whatever knowledge and data are available to design a classifier. The book takes a Bayesian approach to modeling the feature-label distribution and designs an optimal classifier relative to a posterior distribution governing an uncertainty class of feature-label distributions. In this way it takes full advantage of knowledge regarding the underlying system and the available data. Its origins lie in the need to estimate classifier error when there is insufficient data to hold out test data, in which case an optimal error estimate can be obtained relative to the uncertainty class. A natural next step is to forgo classical ad hoc classifier design and simply find an optimal classifier relative to the posterior distribution over the uncertainty class-this being an optimal Bayesian classifier"--

Statistical Analysis of Microbiome Data

Download Statistical Analysis of Microbiome Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733513
Total Pages : 349 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Microbiome Data by : Somnath Datta

Download or read book Statistical Analysis of Microbiome Data written by Somnath Datta and published by Springer Nature. This book was released on 2021-10-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Molecular Data Analysis Using R

Download Molecular Data Analysis Using R PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119165024
Total Pages : 354 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Molecular Data Analysis Using R by : Csaba Ortutay

Download or read book Molecular Data Analysis Using R written by Csaba Ortutay and published by John Wiley & Sons. This book was released on 2017-02-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the difficulties experienced by wet lab researchers with the statistical analysis of molecular biology related data. The authors explain how to use R and Bioconductor for the analysis of experimental data in the field of molecular biology. The content is based upon two university courses for bioinformatics and experimental biology students (Biological Data Analysis with R and High-throughput Data Analysis with R). The material is divided into chapters based upon the experimental methods used in the laboratories. Key features include: • Broad appeal--the authors target their material to researchers in several levels, ensuring that the basics are always covered. • First book to explain how to use R and Bioconductor for the analysis of several types of experimental data in the field of molecular biology. • Focuses on R and Bioconductor, which are widely used for data analysis. One great benefit of R and Bioconductor is that there is a vast user community and very active discussion in place, in addition to the practice of sharing codes. Further, R is the platform for implementing new analysis approaches, therefore novel methods are available early for R users.

Omic Association Studies with R and Bioconductor

Download Omic Association Studies with R and Bioconductor PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429803362
Total Pages : 356 pages
Book Rating : 4.4/5 (298 download)

DOWNLOAD NOW!


Book Synopsis Omic Association Studies with R and Bioconductor by : Juan R. González

Download or read book Omic Association Studies with R and Bioconductor written by Juan R. González and published by CRC Press. This book was released on 2019-06-14 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: After the great expansion of genome-wide association studies, their scientific methodology and, notably, their data analysis has matured in recent years, and they are a keystone in large epidemiological studies. Newcomers to the field are confronted with a wealth of data, resources and methods. This book presents current methods to perform informative analyses using real and illustrative data with established bioinformatics tools and guides the reader through the use of publicly available data. Includes clear, readable programming codes for readers to reproduce and adapt to their own data. Emphasises extracting biologically meaningful associations between traits of interest and genomic, transcriptomic and epigenomic data Uses up-to-date methods to exploit omic data Presents methods through specific examples and computing sessions Supplemented by a website, including code, datasets, and solutions

Data Analysis for the Life Sciences with R

Download Data Analysis for the Life Sciences with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498775861
Total Pages : 537 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry

Download or read book Data Analysis for the Life Sciences with R written by Rafael A. Irizarry and published by CRC Press. This book was released on 2016-10-04 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.