Data Analysis for the Life Sciences with R

Download Data Analysis for the Life Sciences with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498775861
Total Pages : 461 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry

Download or read book Data Analysis for the Life Sciences with R written by Rafael A. Irizarry and published by CRC Press. This book was released on 2016-10-04 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.

Data Analysis for the Life Sciences with R

Download Data Analysis for the Life Sciences with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498775683
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry

Download or read book Data Analysis for the Life Sciences with R written by Rafael A. Irizarry and published by CRC Press. This book was released on 2016-10-04 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.

Introduction to Data Science

Download Introduction to Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000708039
Total Pages : 794 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Introduction to Statistical Data Analysis for the Life Sciences

Download Introduction to Statistical Data Analysis for the Life Sciences PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482238942
Total Pages : 526 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistical Data Analysis for the Life Sciences by : Claus Thorn Ekstrom

Download or read book Introduction to Statistical Data Analysis for the Life Sciences written by Claus Thorn Ekstrom and published by CRC Press. This book was released on 2014-11-06 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Approach to Teaching Introductory StatisticsExpanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the m

Chemometrics with R

Download Chemometrics with R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783662620267
Total Pages : 308 pages
Book Rating : 4.6/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Chemometrics with R by : Ron Wehrens

Download or read book Chemometrics with R written by Ron Wehrens and published by Springer. This book was released on 2020-08-21 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers an accessible introduction to the world of multivariate statistics in the life sciences, providing a comprehensive description of the general data analysis paradigm, from exploratory analysis (principal component analysis, self-organizing maps and clustering) to modeling (classification, regression) and validation (including variable selection). It also includes a special section discussing several more specific topics in the area of chemometrics, such as outlier detection, and biomarker identification. The corresponding R code is provided for all the examples in the book; and scripts, functions and data are available in a separate R package. This second revised edition features not only updates on many of the topics covered, but also several sections of new material (e.g., on handling missing values in PCA, multivariate process monitoring and batch correction).

An Introduction to Statistical Analysis in Research, Optimized Edition

Download An Introduction to Statistical Analysis in Research, Optimized Edition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119301106
Total Pages : 616 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Analysis in Research, Optimized Edition by : Kathleen F. Weaver

Download or read book An Introduction to Statistical Analysis in Research, Optimized Edition written by Kathleen F. Weaver and published by John Wiley & Sons. This book was released on 2017-08-10 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSS®, Excel®, and Numbers® output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSS®, Excel®, and Numbers®. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: • Aims to develop readers’ skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses • Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification • Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results • Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPoint® lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous j

Data Analysis for Social Science

Download Data Analysis for Social Science PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691199434
Total Pages : 256 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for Social Science by : Elena Llaudet

Download or read book Data Analysis for Social Science written by Elena Llaudet and published by Princeton University Press. This book was released on 2022-11-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--

Model Based Inference in the Life Sciences

Download Model Based Inference in the Life Sciences PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387740759
Total Pages : 184 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Model Based Inference in the Life Sciences by : David R. Anderson

Download or read book Model Based Inference in the Life Sciences written by David R. Anderson and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.

Introduction to Nonparametric Statistics for the Biological Sciences Using R

Download Introduction to Nonparametric Statistics for the Biological Sciences Using R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319306340
Total Pages : 329 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Nonparametric Statistics for the Biological Sciences Using R by : Thomas W. MacFarland

Download or read book Introduction to Nonparametric Statistics for the Biological Sciences Using R written by Thomas W. MacFarland and published by Springer. This book was released on 2016-07-06 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.

R for Data Science

Download R for Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491910364
Total Pages : 521 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis R for Data Science by : Hadley Wickham

Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Applied Spatial Data Analysis with R

Download Applied Spatial Data Analysis with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461476186
Total Pages : 405 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Applied Spatial Data Analysis with R by : Roger S. Bivand

Download or read book Applied Spatial Data Analysis with R written by Roger S. Bivand and published by Springer Science & Business Media. This book was released on 2013-06-21 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Data Analysis for Business, Economics, and Policy

Download Data Analysis for Business, Economics, and Policy PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108483011
Total Pages : 741 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis for Business, Economics, and Policy by : Gábor Békés

Download or read book Data Analysis for Business, Economics, and Policy written by Gábor Békés and published by Cambridge University Press. This book was released on 2021-05-06 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.

Applied Compositional Data Analysis

Download Applied Compositional Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319964224
Total Pages : 280 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Applied Compositional Data Analysis by : Peter Filzmoser

Download or read book Applied Compositional Data Analysis written by Peter Filzmoser and published by Springer. This book was released on 2018-11-03 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.

Longitudinal Data Analysis for the Behavioral Sciences Using R

Download Longitudinal Data Analysis for the Behavioral Sciences Using R PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1412982685
Total Pages : 569 pages
Book Rating : 4.4/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Longitudinal Data Analysis for the Behavioral Sciences Using R by : Jeffrey D. Long

Download or read book Longitudinal Data Analysis for the Behavioral Sciences Using R written by Jeffrey D. Long and published by SAGE. This book was released on 2012 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide for the analysis of longitudinal behavioural data. Longitudinal data consist of repeated measures collected on the same subjects over time.

Applied Statistics with R

Download Applied Statistics with R PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198869975
Total Pages : 334 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistics with R by : Justin C. Touchon

Download or read book Applied Statistics with R written by Justin C. Touchon and published by Oxford University Press. This book was released on 2021 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the statistical language R, which is the choice of ecologists worldwide and is rapidly becoming the 'go-to' stats program throughout the life-sciences. Furthermore, by using a single, real-world dataset throughout the book, readers are encouraged to become deeply familiar with an imperfect but realistic set of data. - -

Modern Statistics for the Life Sciences

Download Modern Statistics for the Life Sciences PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199252319
Total Pages : 368 pages
Book Rating : 4.1/5 (992 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistics for the Life Sciences by : Alan Grafen

Download or read book Modern Statistics for the Life Sciences written by Alan Grafen and published by Oxford University Press. This book was released on 2002-03-21 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model formulae represent a powerful methodology for describing, discussing, understanding, and performing that large part of statistical tests known as linear statistics. The book aims to put this methodology firmly within the grasp of undergraduates.

R Programming for Bioinformatics

Download R Programming for Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420063685
Total Pages : 328 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis R Programming for Bioinformatics by : Robert Gentleman

Download or read book R Programming for Bioinformatics written by Robert Gentleman and published by CRC Press. This book was released on 2008-07-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems.Drawing on the author's first-hand exper