Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On A Topic Of Generalized Linear Mixed Models And Stochastic Volatility Model
Download On A Topic Of Generalized Linear Mixed Models And Stochastic Volatility Model full books in PDF, epub, and Kindle. Read online On A Topic Of Generalized Linear Mixed Models And Stochastic Volatility Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Generalized Linear Models with Random Effects by : Youngjo Lee
Download or read book Generalized Linear Models with Random Effects written by Youngjo Lee and published by CRC Press. This book was released on 2006-07-13 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors. Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of which can be run by using the code supplied on the accompanying CD, this book is beneficial to statisticians and researchers involved in the above applications as well as quality-improvement experiments and missing-data analysis.
Book Synopsis Stochastic Loss Reserving Using Generalized Linear Models by : Greg Taylor
Download or read book Stochastic Loss Reserving Using Generalized Linear Models written by Greg Taylor and published by . This book was released on 2016-05-04 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, authors Greg Taylor and Gráinne McGuire discuss generalized linear models (GLM) for loss reserving, beginning with strong emphasis on the chain ladder. The chain ladder is formulated in a GLM context, as is the statistical distribution of the loss reserve. This structure is then used to test the need for departure from the chain ladder model and to consider natural extensions of the chain ladder model that lend themselves to the GLM framework.
Book Synopsis Parameter Estimation in Stochastic Volatility Models by : Jaya P. N. Bishwal
Download or read book Parameter Estimation in Stochastic Volatility Models written by Jaya P. N. Bishwal and published by Springer Nature. This book was released on 2022-08-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Book Synopsis Bayesian Hierarchical Models by : Peter D. Congdon
Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Book Synopsis The Work of Raymond J. Carroll by : Marie Davidian
Download or read book The Work of Raymond J. Carroll written by Marie Davidian and published by Springer. This book was released on 2014-06-06 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.
Book Synopsis Statistical Methods in Epilepsy by : Sharon Chiang
Download or read book Statistical Methods in Epilepsy written by Sharon Chiang and published by CRC Press. This book was released on 2024-03-25 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epilepsy research promises new treatments and insights into brain function, but statistics and machine learning are paramount for extracting meaning from data and enabling discovery. Statistical Methods in Epilepsy provides a comprehensive introduction to statistical methods used in epilepsy research. Written in a clear, accessible style by leading authorities, this textbook demystifies introductory and advanced statistical methods, providing a practical roadmap that will be invaluable for learners and experts alike. Topics include a primer on version control and coding, pre-processing of imaging and electrophysiological data, hypothesis testing, generalized linear models, survival analysis, network analysis, time-series analysis, spectral analysis, spatial statistics, unsupervised and supervised learning, natural language processing, prospective trial design, pharmacokinetic and pharmacodynamic modeling, and randomized clinical trials. Features: Provides a comprehensive introduction to statistical methods employed in epilepsy research Divided into four parts: Basic Processing Methods for Data Analysis; Statistical Models for Epilepsy Data Types; Machine Learning Methods; and Clinical Studies Covers methodological and practical aspects, as well as worked-out examples with R and Python code provided in the online supplement Includes contributions by experts in the field https://github.com/sharon-chiang/Statistics-Epilepsy-Book/ The handbook targets clinicians, graduate students, medical students, and researchers who seek to conduct quantitative epilepsy research. The topics covered extend broadly to quantitative research in other neurological specialties and provide a valuable reference for the field of neurology.
Book Synopsis Dissertation Abstracts International by :
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2009 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book 2011 written by and published by Walter de Gruyter. This book was released on 2013-03-01 with total page 2983 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particularly in the humanities and social sciences, festschrifts are a popular forum for discussion. The IJBF provides quick and easy general access to these important resources for scholars and students. The festschrifts are located in state and regional libraries and their bibliographic details are recorded. Since 1983, more than 639,000 articles from more than 29,500 festschrifts, published between 1977 and 2010, have been catalogued.
Book Synopsis Applied Bayesian Hierarchical Methods by : Peter D. Congdon
Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach
Book Synopsis Bulletin - Institute of Mathematical Statistics by : Institute of Mathematical Statistics
Download or read book Bulletin - Institute of Mathematical Statistics written by Institute of Mathematical Statistics and published by . This book was released on 1997 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Complex Systems in Finance and Econometrics by : Robert A. Meyers
Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Book Synopsis Large Sample Techniques for Statistics by : Jiming Jiang
Download or read book Large Sample Techniques for Statistics written by Jiming Jiang and published by Springer Nature. This book was released on 2022-04-04 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science. This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..
Book Synopsis Spatio–Temporal Methods in Environmental Epidemiology with R by : Gavin Shaddick
Download or read book Spatio–Temporal Methods in Environmental Epidemiology with R written by Gavin Shaddick and published by CRC Press. This book was released on 2023-12-12 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatio-Temporal Methods in Environmental Epidemiology with R, like its First Edition, explores the interface between environmental epidemiology and spatio-temporal modeling. It links recent developments in spatio-temporal theory with epidemiological applications. Drawing on real-life problems, it shows how recent advances in methodology can assess the health risks associated with environmental hazards. The book's clear guidelines enable the implementation of the methodology and estimation of risks in practice. New additions to the Second Edition include: a thorough exploration of the underlying concepts behind knowledge discovery through data; a new chapter on extracting information from data using R and the tidyverse; additional material on methods for Bayesian computation, including the use of NIMBLE and Stan; new methods for performing spatio-temporal analysis and an updated chapter containing further topics. Throughout the book there are new examples, and the presentation of R code for examples has been extended. Along with these additions, the book now has a GitHub site (https://spacetime-environ.github.io/stepi2) that contains data, code and further worked examples. Features: • Explores the interface between environmental epidemiology and spatio-temporal modeling • Incorporates examples that show how spatio-temporal methodology can inform societal concerns about the effects of environmental hazards on health • Uses a Bayesian foundation on which to build an integrated approach to spatio-temporal modeling and environmental epidemiology • Discusses data analysis and topics such as data visualization, mapping, wrangling and analysis • Shows how to design networks for monitoring hazardous environmental processes and the ill effects of preferential sampling • Through the listing and application of code, shows the power of R, tidyverse, NIMBLE and Stan and other modern tools in performing complex data analysis and modeling Representing a continuing important direction in environmental epidemiology, this book – in full color throughout – underscores the increasing need to consider dependencies in both space and time when modeling epidemiological data. Readers will learn how to identify and model patterns in spatio-temporal data and how to exploit dependencies over space and time to reduce bias and inefficiency when estimating risks to health.
Book Synopsis Stochastic Volatility by : Neil Shephard
Download or read book Stochastic Volatility written by Neil Shephard and published by Oxford University Press, USA. This book was released on 2005 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.
Book Synopsis Spatio-Temporal Methods in Environmental Epidemiology by : Gavin Shaddick
Download or read book Spatio-Temporal Methods in Environmental Epidemiology written by Gavin Shaddick and published by CRC Press. This book was released on 2015-06-17 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and
Book Synopsis Bayesian Econometric Methods by : Joshua Chan
Download or read book Bayesian Econometric Methods written by Joshua Chan and published by Cambridge University Press. This book was released on 2019-08-15 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates Bayesian theory and application through a series of exercises in question and answer format.
Book Synopsis Generalized Linear Mixed Models by : Charles E. McCulloch
Download or read book Generalized Linear Mixed Models written by Charles E. McCulloch and published by IMS. This book was released on 2003 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models