Neural Network Principles

Download Neural Network Principles PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Principles by : Robert L. Harvey

Download or read book Neural Network Principles written by Robert L. Harvey and published by . This book was released on 1994 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using models of biological systems as springboards to a broad range of applications, this volume presents the basic ideas of neural networks in mathematical form. Comprehensive in scope, Neural Network Principles outlines the structure of the human brain, explains the physics of neurons, derives the standard neuron state equations, and presents the consequences of these mathematical models. Author Robert L. Harvey derives a set of simple networks that can filter, recall, switch, amplify, and recognize input signals that are all patterns of neuron activation. The author also discusses properties of general interconnected neuron groups, including the well-known Hopfield and perception neural networks using a unified approach along with suggestions of new design procedures for both. He then applies the theory to synthesize artificial neural networks for specialized tasks. In addition, Neural Network Principles outlines the design of machine vision systems, explores motor control of the human brain and presents two examples of artificial hand-eye systems, demonstrates how to solve large systems of interconnected neurons, and considers control and modulation in the human brain-mind with insights for a new understanding of many mental illnesses.

The Principles of Deep Learning Theory

Download The Principles of Deep Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316519333
Total Pages : 473 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts

Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Principles Of Artificial Neural Networks (2nd Edition)

Download Principles Of Artificial Neural Networks (2nd Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814475564
Total Pages : 320 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Principles Of Artificial Neural Networks (2nd Edition) by : Daniel Graupe

Download or read book Principles Of Artificial Neural Networks (2nd Edition) written by Daniel Graupe and published by World Scientific. This book was released on 2007-04-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strengths and weaknesses of the different networks.

Process Neural Networks

Download Process Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540737626
Total Pages : 240 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Process Neural Networks by : Xingui He

Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Principles of Artificial Neural Networks

Download Principles of Artificial Neural Networks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814522740
Total Pages : 382 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Principles of Artificial Neural Networks by : Daniel Graupe

Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 2013 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."

Artificial Neural Networks

Download Artificial Neural Networks PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819459879
Total Pages : 184 pages
Book Rating : 4.4/5 (598 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks by : Kevin L. Priddy

Download or read book Artificial Neural Networks written by Kevin L. Priddy and published by SPIE Press. This book was released on 2005 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.

Digital Systems

Download Digital Systems PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1789845408
Total Pages : 165 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Digital Systems by : Vahid Asadpour

Download or read book Digital Systems written by Vahid Asadpour and published by BoD – Books on Demand. This book was released on 2018-11-28 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an approach toward the applications and principle theory of digital signal processing in modern intelligent systems, biological engineering, telecommunication, and information technology. Assuming the reader already has prior knowledge of signal processing theory, this book will be useful for finding novel methods that fit special needs in digital signal processing (DSP). The combination of signal processing and intelligent systems in hybrid structures rather than serial or parallel processing provide the best mechanism that is a better fit with the comprehensive nature of human. This book is a practical reference that places the emphasis on principles and applications of DSP in digital systems. It covers a broad area of digital systems and applications of machine learning methods including convolutional neural networks, evolutionary algorithms, adaptive filters, spectral estimation, data compression and functional verification. The level of the book is ideal for professional DSP users and useful for graduate students who are looking for solutions to their design problems. The theoretical principles provide the required base for comprehension of the methods and application of modifications for the special needs of practical projects.

An Introduction to Neural Networks

Download An Introduction to Neural Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482286998
Total Pages : 148 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Neural Networks by : Kevin Gurney

Download or read book An Introduction to Neural Networks written by Kevin Gurney and published by CRC Press. This book was released on 2018-10-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Principles Of Artificial Neural Networks: Basic Designs To Deep Learning (4th Edition)

Download Principles Of Artificial Neural Networks: Basic Designs To Deep Learning (4th Edition) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811201242
Total Pages : 439 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Principles Of Artificial Neural Networks: Basic Designs To Deep Learning (4th Edition) by : Daniel Graupe

Download or read book Principles Of Artificial Neural Networks: Basic Designs To Deep Learning (4th Edition) written by Daniel Graupe and published by World Scientific. This book was released on 2019-03-15 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Neural Network Design and the Complexity of Learning

Download Neural Network Design and the Complexity of Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262100458
Total Pages : 188 pages
Book Rating : 4.1/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Design and the Complexity of Learning by : J. Stephen Judd

Download or read book Neural Network Design and the Complexity of Learning written by J. Stephen Judd and published by MIT Press. This book was released on 1990 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the tools of complexity theory, Stephen Judd develops a formal description of associative learning in connectionist networks. He rigorously exposes the computational difficulties in training neural networks and explores how certain design principles will or will not make the problems easier.Judd looks beyond the scope of any one particular learning rule, at a level above the details of neurons. There he finds new issues that arise when great numbers of neurons are employed and he offers fresh insights into design principles that could guide the construction of artificial and biological neural networks.The first part of the book describes the motivations and goals of the study and relates them to current scientific theory. It provides an overview of the major ideas, formulates the general learning problem with an eye to the computational complexity of the task, reviews current theory on learning, relates the book's model of learning to other models outside the connectionist paradigm, and sets out to examine scale-up issues in connectionist learning.Later chapters prove the intractability of the general case of memorizing in networks, elaborate on implications of this intractability and point out several corollaries applying to various special subcases. Judd refines the distinctive characteristics of the difficulties with families of shallow networks, addresses concerns about the ability of neural networks to generalize, and summarizes the results, implications, and possible extensions of the work. Neural Network Design and the Complexity of Learning is included in the Network Modeling and Connectionism series edited by Jeffrey Elman.

Neural Networks with R

Download Neural Networks with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788399412
Total Pages : 264 pages
Book Rating : 4.7/5 (883 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks with R by : Giuseppe Ciaburro

Download or read book Neural Networks with R written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-09-27 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Principles of Neural Design

Download Principles of Neural Design PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262028700
Total Pages : 567 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Principles of Neural Design by : Peter Sterling

Download or read book Principles of Neural Design written by Peter Sterling and published by MIT Press. This book was released on 2015-05-22 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Neural Networks in QSAR and Drug Design

Download Neural Networks in QSAR and Drug Design PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080537383
Total Pages : 309 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in QSAR and Drug Design by : James Devillers

Download or read book Neural Networks in QSAR and Drug Design written by James Devillers and published by Academic Press. This book was released on 1996-08-09 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price

Principles of Artificial Neural Networks

Download Principles of Artificial Neural Networks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810241254
Total Pages : 256 pages
Book Rating : 4.2/5 (412 download)

DOWNLOAD NOW!


Book Synopsis Principles of Artificial Neural Networks by : Daniel Graupe

Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 1997-05-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for a first-year graduate course on Artificial Neural Networks. It assumes no prior background in the subject and is directed to MS students in electrical engineering, computer science and related fields, with background in at least one programming language or in a programming tool such as Matlab, and who have taken the basic undergraduate classes in systems or in signal processing.

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download Artificial Intelligence in the Age of Neural Networks and Brain Computing PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323958168
Total Pages : 398 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Neural Smithing

Download Neural Smithing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262181908
Total Pages : 359 pages
Book Rating : 4.2/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Neural Smithing by : Russell Reed

Download or read book Neural Smithing written by Russell Reed and published by MIT Press. This book was released on 1999-02-17 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.