Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Elementary Dirichlet Series And Modular Forms
Download Elementary Dirichlet Series And Modular Forms full books in PDF, epub, and Kindle. Read online Elementary Dirichlet Series And Modular Forms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Elementary Dirichlet Series and Modular Forms by : Goro Shimura
Download or read book Elementary Dirichlet Series and Modular Forms written by Goro Shimura and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
Book Synopsis Introduction to Siegel Modular Forms and Dirichlet Series by : Anatoli Andrianov
Download or read book Introduction to Siegel Modular Forms and Dirichlet Series written by Anatoli Andrianov and published by Springer Science & Business Media. This book was released on 2010-03-17 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several years ago I was invited to an American university to give one-term graduate course on Siegel modular forms, Hecke operators, and related zeta functions. The idea to present in a concise but basically complete and self-contained form an int- duction to an important and developing area based partly on my own work attracted me. I accepted the invitation and started to prepare the course. Unfortunately, the visit was not realized. But the idea of such a course continued to be alive till after a number of years this book was ?nally completed. I hope that this short book will serve to attract young researchers to this beautiful ?eld, and that it will simplify and make more pleasant the initial steps. No special knowledge is presupposed for reading this book beyond standard courses in algebra and calculus (one and several variables), although some skill in working with mathematical texts would be helpful. The reader will judge whether the result was worth the effort. Dedications. The ideas of Goro Shimura exerted a deep in?uence on the number theory of the second half of the twentieth century in general and on the author’s formation in particular. When Andre ` Weil was signing a copy of his “Basic Number Theory” to my son, he wrote in Russian, ”To Fedor Anatolievich hoping that he will become a number theoretist”. Fedor has chosen computer science. Now I pass on the idea to Fedor’s daughter, Alexandra Fedorovna.
Book Synopsis Modular Functions and Dirichlet Series in Number Theory by : Tom M. Apostol
Download or read book Modular Functions and Dirichlet Series in Number Theory written by Tom M. Apostol and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Book Synopsis Modular Forms: Basics and Beyond by : Goro Shimura
Download or read book Modular Forms: Basics and Beyond written by Goro Shimura and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows the basics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically.
Book Synopsis Introduction to Modular Forms by : Serge Lang
Download or read book Introduction to Modular Forms written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book gives a thorough introduction to several theories that are fundamental to research on modular forms. Most of the material, despite its importance, had previously been unavailable in textbook form. Complete and readable proofs are given... In conclusion, this book is a welcome addition to the literature for the growing number of students and mathematicians in other fields who want to understand the recent developments in the theory of modular forms." #Mathematical Reviews# "This book will certainly be indispensable to all those wishing to get an up-to-date initiation to the theory of modular forms." #Publicationes Mathematicae#
Book Synopsis Modular Forms, a Computational Approach by : William A. Stein
Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Download or read book Modular Forms written by Henri Cohen and published by American Mathematical Soc.. This book was released on 2017-08-02 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of modular forms is a fundamental tool used in many areas of mathematics and physics. It is also a very concrete and “fun” subject in itself and abounds with an amazing number of surprising identities. This comprehensive textbook, which includes numerous exercises, aims to give a complete picture of the classical aspects of the subject, with an emphasis on explicit formulas. After a number of motivating examples such as elliptic functions and theta functions, the modular group, its subgroups, and general aspects of holomorphic and nonholomorphic modular forms are explained, with an emphasis on explicit examples. The heart of the book is the classical theory developed by Hecke and continued up to the Atkin–Lehner–Li theory of newforms and including the theory of Eisenstein series, Rankin–Selberg theory, and a more general theory of theta series including the Weil representation. The final chapter explores in some detail more general types of modular forms such as half-integral weight, Hilbert, Jacobi, Maass, and Siegel modular forms. Some “gems” of the book are an immediately implementable trace formula for Hecke operators, generalizations of Haberland's formulas for the computation of Petersson inner products, W. Li's little-known theorem on the diagonalization of the full space of modular forms, and explicit algorithms due to the second author for computing Maass forms. This book is essentially self-contained, the necessary tools such as gamma and Bessel functions, Bernoulli numbers, and so on being given in a separate chapter.
Book Synopsis Modular Forms and Dirichlet Series by : Andrew Ogg
Download or read book Modular Forms and Dirichlet Series written by Andrew Ogg and published by . This book was released on 1969-01 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier
Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Book Synopsis Some Applications of Modular Forms by : Peter Sarnak
Download or read book Some Applications of Modular Forms written by Peter Sarnak and published by Cambridge University Press. This book was released on 1990-11-15 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.
Book Synopsis Introductory Lectures on Siegel Modular Forms by : Helmut Klingen
Download or read book Introductory Lectures on Siegel Modular Forms written by Helmut Klingen and published by Cambridge University Press. This book was released on 1990-02-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: From their inception, Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The author's aim is to present a straightforward and easily accessible survey of the main ideas of the theory at an elementary level, providing a sound basis from which the reader can study advanced works and undertake original research. This book is based on lectures given by the author for a number of years and is intended for a one-semester graduate course, though it can also be used profitably for self-study. The only prerequisites are a basic knowledge of algebra, number theory and complex analysis.
Book Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura
Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Book Synopsis Elliptic Modular Functions by : B. Schoeneberg
Download or read book Elliptic Modular Functions written by B. Schoeneberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a fully detailed introduction to the theory of modular functions of a single variable. I hope that it will fill gaps which in view ofthe lively development ofthis theory have often been an obstacle to the students' progress. The study of the book requires an elementary knowledge of algebra, number theory and topology and a deeper knowledge of the theory of functions. An extensive discussion of the modular group SL(2, Z) is followed by the introduction to the theory of automorphic functions and auto morphic forms of integral dimensions belonging to SL(2,Z). The theory is developed first via the Riemann mapping theorem and then again with the help of Eisenstein series. An investigation of the subgroups of SL(2, Z) and the introduction of automorphic functions and forms belonging to these groups folIows. Special attention is given to the subgroups of finite index in SL (2, Z) and, among these, to the so-called congruence groups. The decisive role in this setting is assumed by the Riemann-Roch theorem. Since its proof may be found in the literature, only the pertinent basic concepts are outlined. For the extension of the theory, special fields of modular functions in particular the transformation fields of order n-are studied. Eisen stein series of higher level are introduced which, in case of the dimension - 2, allow the construction of integrals of the 3 rd kind. The properties of these integrals are discussed at length.
Book Synopsis The Map of My Life by : Goro Shimura
Download or read book The Map of My Life written by Goro Shimura and published by Springer Science & Business Media. This book was released on 2008-12-16 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author writes freely and often humorously about his life, beginning with his earliest childhood days. He describes his survival of American bombing raids when he was a teenager in Japan, his emergence as a researcher in a post-war university system that was seriously deficient, and his life as a mature mathematician in Princeton and in the international academic community. Every page of this memoir contains personal observations and striking stories. Such luminaries as Chevalley, Oppenheimer, Siegel, and Weil figure prominently in its anecdotes. Goro Shimura is Professor Emeritus of Mathematics at Princeton University. In 1996, he received the Leroy P. Steele Prize for Lifetime Achievement from the American Mathematical Society. He is the author of Elementary Dirichlet Series and Modular Forms (Springer 2007), Arithmeticity in the Theory of Automorphic Forms (AMS 2000), and Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press 1971).
Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon
Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Book Synopsis Complex Analysis by : Eberhard Freitag
Download or read book Complex Analysis written by Eberhard Freitag and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included
Book Synopsis Moonshine beyond the Monster by : Terry Gannon
Download or read book Moonshine beyond the Monster written by Terry Gannon and published by Cambridge University Press. This book was released on 2023-07-31 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: