Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Boundary Value Problems And Fourier Expansions
Download Boundary Value Problems And Fourier Expansions full books in PDF, epub, and Kindle. Read online Boundary Value Problems And Fourier Expansions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :C. R. MacCluer Publisher :Institute of Electrical & Electronics Engineers(IEEE) ISBN 13 : Total Pages :372 pages Book Rating :4.3/5 (91 download)
Book Synopsis Boundary Value Problems and Orthogonal Expansions by : C. R. MacCluer
Download or read book Boundary Value Problems and Orthogonal Expansions written by C. R. MacCluer and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1994 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a first course in the topic using the modern, norm-based Sobolev techniques not currently available in published format. Major concepts are presented with minimal possible detail and details are pushed into the exercises, omitted, or postponed until later sections. Includes worked examples of pr
Book Synopsis Boundary Value Problems and Fourier Expansions by : Charles R. MacCluer
Download or read book Boundary Value Problems and Fourier Expansions written by Charles R. MacCluer and published by Dover Publications. This book was released on 2013-12-20 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.
Book Synopsis Boundary Value Problems by : David L. Powers
Download or read book Boundary Value Problems written by David L. Powers and published by Elsevier. This book was released on 2014-05-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.
Book Synopsis Elementary Differential Equations with Boundary Value Problems by : William F. Trench
Download or read book Elementary Differential Equations with Boundary Value Problems written by William F. Trench and published by Thomson Brooks/Cole. This book was released on 2001 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky
Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Book Synopsis Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple by : George A. Articolo
Download or read book Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple written by George A. Articolo and published by Academic Press. This book was released on 2009-07-22 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Book Synopsis Boundary Value Problems and Fourier Expansions by : Charles R. MacCluer
Download or read book Boundary Value Problems and Fourier Expansions written by Charles R. MacCluer and published by Courier Corporation. This book was released on 2013-01-18 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.
Book Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein
Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Book Synopsis Mathematical Methods in Physics by : Victor Henner
Download or read book Mathematical Methods in Physics written by Victor Henner and published by CRC Press. This book was released on 2009-06-18 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that
Book Synopsis Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy by : Gennadii V. Demidenko
Download or read book Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy written by Gennadii V. Demidenko and published by Springer Nature. This book was released on 2020-04-03 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.
Book Synopsis Multiscale Potential Theory by : Willi Freeden
Download or read book Multiscale Potential Theory written by Willi Freeden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.
Book Synopsis Fourier Analysis and Its Applications by : G. B. Folland
Download or read book Fourier Analysis and Its Applications written by G. B. Folland and published by American Mathematical Soc.. This book was released on 2009 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Book Synopsis Schaum's Outline of Fourier Analysis with Applications to Boundary Value Problems by : Murray R. Spiegel
Download or read book Schaum's Outline of Fourier Analysis with Applications to Boundary Value Problems written by Murray R. Spiegel and published by McGraw Hill Professional. This book was released on 1974 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: For use as supplement or as textbook.
Book Synopsis Partial Differential Equations of Applied Mathematics by : Erich Zauderer
Download or read book Partial Differential Equations of Applied Mathematics written by Erich Zauderer and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.
Book Synopsis Elementary Applied Partial Differential Equations by : Richard Haberman
Download or read book Elementary Applied Partial Differential Equations written by Richard Haberman and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.
Book Synopsis Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version) by : Richard Haberman
Download or read book Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version) written by Richard Haberman and published by Pearson. This book was released on 2018-03-15 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.
Book Synopsis Beginning Partial Differential Equations by : Peter V. O'Neil
Download or read book Beginning Partial Differential Equations written by Peter V. O'Neil and published by John Wiley & Sons. This book was released on 2014-05-07 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.