Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Aspects Of Combinatorics And Combinatorial Number Theory
Download Aspects Of Combinatorics And Combinatorial Number Theory full books in PDF, epub, and Kindle. Read online Aspects Of Combinatorics And Combinatorial Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Aspects of Combinatorics and Combinatorial Number Theory by : Sukumar Das Adhikari
Download or read book Aspects of Combinatorics and Combinatorial Number Theory written by Sukumar Das Adhikari and published by . This book was released on 2002 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Combinatorial Number Theory and Additive Group Theory by : Alfred Geroldinger
Download or read book Combinatorial Number Theory and Additive Group Theory written by Alfred Geroldinger and published by Springer Science & Business Media. This book was released on 2009-04-15 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive combinatorics is a relatively recent term coined to comprehend the developments of the more classical additive number theory, mainly focussed on problems related to the addition of integers. Some classical problems like the Waring problem on the sum of k-th powers or the Goldbach conjecture are genuine examples of the original questions addressed in the area. One of the features of contemporary additive combinatorics is the interplay of a great variety of mathematical techniques, including combinatorics, harmonic analysis, convex geometry, graph theory, probability theory, algebraic geometry or ergodic theory. This book gathers the contributions of many of the leading researchers in the area and is divided into three parts. The two first parts correspond to the material of the main courses delivered, Additive combinatorics and non-unique factorizations, by Alfred Geroldinger, and Sumsets and structure, by Imre Z. Ruzsa. The third part collects the notes of most of the seminars which accompanied the main courses, and which cover a reasonably large part of the methods, techniques and problems of contemporary additive combinatorics.
Book Synopsis Handbook of Combinatorics by : R.L. Graham
Download or read book Handbook of Combinatorics written by R.L. Graham and published by Elsevier. This book was released on 1995-12-11 with total page 1283 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Commutative Algebra and Number Theory by : Sukumar Das Adhikari
Download or read book An Introduction to Commutative Algebra and Number Theory written by Sukumar Das Adhikari and published by CRC Press. This book was released on 2001-11 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an elementary introduction to algebra and number theory. The text begins by a review of groups, rings, and fields. The algebra portion addresses polynomial rings, UFD, PID, and Euclidean domains, field extensions, modules, and Dedckind domains. The number theory portion reviews elementary congruence, quadratic reciprocity, algebraic number fields, and a glimpse into the various aspects of that subject. This book could be used as a one semester course in graduate mathematics.
Book Synopsis Combinatorial Set Theory by : Lorenz J. Halbeisen
Download or read book Combinatorial Set Theory written by Lorenz J. Halbeisen and published by Springer. This book was released on 2017-12-20 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Book Synopsis Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory by : Mauro Di Nasso
Download or read book Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory written by Mauro Di Nasso and published by Springer. This book was released on 2019-05-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.
Book Synopsis Combinatorial Theory by : Martin Aigner
Download or read book Combinatorial Theory written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen
Book Synopsis Combinatorial and Additive Number Theory III by : Melvyn B. Nathanson
Download or read book Combinatorial and Additive Number Theory III written by Melvyn B. Nathanson and published by Springer Nature. This book was released on 2019-12-10 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Book Synopsis Combinatorics, Automata and Number Theory by : Valérie Berthé
Download or read book Combinatorics, Automata and Number Theory written by Valérie Berthé and published by Cambridge University Press. This book was released on 2010-08-12 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and its Applications cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters, For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.
Book Synopsis Elementary Number Theory in Nine Chapters by : James J. Tattersall
Download or read book Elementary Number Theory in Nine Chapters written by James J. Tattersall and published by Cambridge University Press. This book was released on 1999-10-14 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
Book Synopsis Principles of Combinatorics by : Berge
Download or read book Principles of Combinatorics written by Berge and published by Academic Press. This book was released on 1971-04-20 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Berge's Principles of Combinatorics is now an acknowledged classic work of the field. Complementary to his previous books, Berge's introduction deals largely with enumeration. The choice of topics is balanced, the presentation elegant, and the text can be followed by anyone with an interest in the subject with only a little algebra required as a background. Some topics were here described for the first time, including Robinston-Shensted theorum, the Eden-Schutzenberger theorum, and facts connecting Young diagrams, trees, and the symmetric group.
Book Synopsis Combinatorial Group Theory by : Wilhelm Magnus
Download or read book Combinatorial Group Theory written by Wilhelm Magnus and published by Courier Corporation. This book was released on 2004-01-01 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.
Download or read book Combinatorics written by Pavle Mladenović and published by Springer. This book was released on 2019-03-13 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.
Book Synopsis Combinatorics: The Art of Counting by : Bruce E. Sagan
Download or read book Combinatorics: The Art of Counting written by Bruce E. Sagan and published by American Mathematical Soc.. This book was released on 2020-10-16 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.
Book Synopsis Combinatorics: Ancient & Modern by : Robin Wilson
Download or read book Combinatorics: Ancient & Modern written by Robin Wilson and published by OUP Oxford. This book was released on 2013-06-27 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Who first presented Pascal's triangle? (It was not Pascal.) Who first presented Hamiltonian graphs? (It was not Hamilton.) Who first presented Steiner triple systems? (It was not Steiner.) The history of mathematics is a well-studied and vibrant area of research, with books and scholarly articles published on various aspects of the subject. Yet, the history of combinatorics seems to have been largely overlooked. This book goes some way to redress this and serves two main purposes: 1) it constitutes the first book-length survey of the history of combinatorics; and 2) it assembles, for the first time in a single source, researches on the history of combinatorics that would otherwise be inaccessible to the general reader. Individual chapters have been contributed by sixteen experts. The book opens with an introduction by Donald E. Knuth to two thousand years of combinatorics. This is followed by seven chapters on early combinatorics, leading from Indian and Chinese writings on permutations to late-Renaissance publications on the arithmetical triangle. The next seven chapters trace the subsequent story, from Euler's contributions to such wide-ranging topics as partitions, polyhedra, and latin squares to the 20th century advances in combinatorial set theory, enumeration, and graph theory. The book concludes with some combinatorial reflections by the distinguished combinatorialist, Peter J. Cameron. This book is not expected to be read from cover to cover, although it can be. Rather, it aims to serve as a valuable resource to a variety of audiences. Combinatorialists with little or no knowledge about the development of their subject will find the historical treatment stimulating. A historian of mathematics will view its assorted surveys as an encouragement for further research in combinatorics. The more general reader will discover an introduction to a fascinating and too little known subject that continues to stimulate and inspire the work of scholars today.
Book Synopsis Analytic Combinatorics by : Philippe Flajolet
Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Book Synopsis A Survey of Combinatorial Theory by : Jagdish N. Srivastava
Download or read book A Survey of Combinatorial Theory written by Jagdish N. Srivastava and published by Elsevier. This book was released on 2014-05-12 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Survey of Combinatorial Theory covers the papers presented at the International Symposium on Combinatorial Mathematics and its Applications, held at Colorado State University (CSU), Fort Collins, Colorado on September 9-11, 1971. The book focuses on the principles, operations, and approaches involved in combinatorial theory, including the Bose-Nelson sorting problem, Golay code, and Galois geometries. The selection first ponders on classical and modern topics in finite geometrical structures; balanced hypergraphs and applications to graph theory; and strongly regular graph derived from the perfect ternary Golay code. Discussions focus on perfect ternary Golay code, finite projective and affine planes, Galois geometries, and other geometric structures. The book then examines the characterization problems of combinatorial graph theory, line-minimal graphs with cyclic group, circle geometry in higher dimensions, and Cayley diagrams and regular complex polygons. The text discusses combinatorial problems in finite Abelian groups, dissection graphs of planar point sets, combinatorial problems and results in fractional replication, Bose-Nelson sorting problem, and some combinatorial aspects of coding theory. The text also reviews the enumerative theory of planar maps, balanced arrays and orthogonal arrays, existence of resolvable block designs, and combinatorial problems in communication networks. The selection is a valuable source of information for mathematicians and researchers interested in the combinatorial theory.