Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Visualizing Statistical Models And Concepts
Download Visualizing Statistical Models And Concepts full books in PDF, epub, and Kindle. Read online Visualizing Statistical Models And Concepts ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Visualizing Statistical Models And Concepts by : R.W. Farebrother
Download or read book Visualizing Statistical Models And Concepts written by R.W. Farebrother and published by CRC Press. This book was released on 2002-06-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines classic algorithms, geometric diagrams, and mechanical principles for enhancing visualization of statistical estimation procedures and mathematical concepts in physics, engineering, and computer programming.
Book Synopsis Data Visualization by : Kieran Healy
Download or read book Data Visualization written by Kieran Healy and published by Princeton University Press. This book was released on 2018-12-18 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions
Book Synopsis Modern Data Science with R by : Benjamin S. Baumer
Download or read book Modern Data Science with R written by Benjamin S. Baumer and published by CRC Press. This book was released on 2021-03-31 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.
Book Synopsis Visualizing Linear Models by : W. D. Brinda
Download or read book Visualizing Linear Models written by W. D. Brinda and published by Springer Nature. This book was released on 2021-02-24 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a visual and intuitive coverage of the core theory of linear models. Designed to develop fluency with the underlying mathematics and to build a deep understanding of the principles, it's an excellent basis for a one-semester course on statistical theory and linear modeling for intermediate undergraduates or graduate students. Three chapters gradually develop the essentials of linear model theory. They are each preceded by a review chapter that covers a foundational prerequisite topic. This classroom-tested work explores two distinct and complementary types of visualization: the “observations picture” and the “variables picture.” To improve retention of material, this book is supplemented by a bank of ready-made practice exercises for students. These are available for digital or print use.
Book Synopsis R for Data Science by : Hadley Wickham
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Book Synopsis Linear Models in Statistics by : Alvin C. Rencher
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Book Synopsis Statistical Graphics for Visualizing Multivariate Data by : William G. Jacoby
Download or read book Statistical Graphics for Visualizing Multivariate Data written by William G. Jacoby and published by SAGE. This book was released on 1998-02-06 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jacoby explores a variety of graphical displays that are useful for visualising multivariate data, and introduces the concept of a 'data space'. Several methods for coding information directly into the plotting symbols are explained.
Book Synopsis Introduction to Data Science by : Rafael A. Irizarry
Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Book Synopsis Discrete Data Analysis with R by : Michael Friendly
Download or read book Discrete Data Analysis with R written by Michael Friendly and published by CRC Press. This book was released on 2015-12-16 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Book Synopsis Visualizing Statistical Models and Concepts by : R. W. Farebrother
Download or read book Visualizing Statistical Models and Concepts written by R. W. Farebrother and published by CRC Press. This book was released on 2020-02-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines classic algorithms, geometric diagrams, and mechanical principles for enhancing visualization of statistical estimation procedures and mathematical concepts in physics, engineering, and computer programming.
Book Synopsis Confidence Intervals in Generalized Regression Models by : Esa Uusipaikka
Download or read book Confidence Intervals in Generalized Regression Models written by Esa Uusipaikka and published by CRC Press. This book was released on 2008-07-25 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Cohesive Approach to Regression Models Confidence Intervals in Generalized Regression Models introduces a unified representation-the generalized regression model (GRM)-of various types of regression models. It also uses a likelihood-based approach for performing statistical inference from statistical evidence consisting of data a
Book Synopsis Univariate and Multivariate General Linear Models by : Kevin Kim
Download or read book Univariate and Multivariate General Linear Models written by Kevin Kim and published by CRC Press. This book was released on 2006-10-11 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral
Book Synopsis A Course on Queueing Models by : Joti Lal Jain
Download or read book A Course on Queueing Models written by Joti Lal Jain and published by CRC Press. This book was released on 2016-04-19 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of engineering principles in divergent fields such as management science and communications as well as the advancement of several approaches in theory and computation have led to growing interest in queueing models, creating the need for a comprehensive text. Emphasizing Markovian structures and the techniques that occur in differen
Book Synopsis Advances on Models, Characterizations and Applications by : N. Balakrishnan
Download or read book Advances on Models, Characterizations and Applications written by N. Balakrishnan and published by CRC Press. This book was released on 2005-05-31 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical distributions are one of the most important applied mathematical tools across a wide spectrum of disciplines, including engineering, biological sciences, and health and social sciences. Since they are used to model observed data and ultimately to develop inferential procedures, understanding the properties of statistical distributions i
Book Synopsis Teaching Statistics and Quantitative Methods in the 21st Century by : Joseph Lee Rodgers
Download or read book Teaching Statistics and Quantitative Methods in the 21st Century written by Joseph Lee Rodgers and published by Routledge. This book was released on 2020-07-14 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work, which provides a guide for revising and expanding statistical and quantitative methods pedagogy, is useful for novice and seasoned instructors at both undergraduate and graduate levels, inspiring them to use transformative approaches to train students as future researchers. Is it time for a radical revision in our pedagogical orientation? How are we currently teaching introductory statistics and quantitative methods, and how should we teach them? What innovations are used, what is in development? This ground-breaking edited volume addresses these questions and more, providing cutting-edge guidance from highly accomplished teachers. Many current textbooks and syllabi differ in only superficial ways from those used 50 years ago, yet the field of quantitative methods—and its relationship to the research enterprise—has expanded in many important ways. A philosophical axiom underlying this book is that introductory teaching should prepare students to potentially enter more advanced quantitative methods training and ultimately to become accomplished researchers. The reader is introduced to classroom innovation, and to both pragmatic and philosophical challenges to the status quo, motivating a broad revolution in how introductory statistics and quantitative methods are taught. Designed to update and renovate statistical pedagogy, this material will stimulate students, new instructors, and experienced teachers.
Book Synopsis Introductory Statistical Inference by : Nitis Mukhopadhyay
Download or read book Introductory Statistical Inference written by Nitis Mukhopadhyay and published by CRC Press. This book was released on 2006-02-07 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.
Book Synopsis Visualizing Social Science Research by : Johannes Wheeldon
Download or read book Visualizing Social Science Research written by Johannes Wheeldon and published by SAGE. This book was released on 2011-07-12 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text presents basic principles of social science research through maps, graphs, and diagrams. The authors show how concept maps and mind maps can be used in quantitative, qualitative, and mixed methods research, using student-friendly examples and classroom-based activities. Integrating theory and practice, chapters show how to use these tools to plan research projects, "see" analysis strategies, and assist in the development and writing of research reports.