Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Statistical Evaluation Of Medical Tests For Classification And Prediction
Download The Statistical Evaluation Of Medical Tests For Classification And Prediction full books in PDF, epub, and Kindle. Read online The Statistical Evaluation Of Medical Tests For Classification And Prediction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Statistical Evaluation of Medical Tests for Classification and Prediction by : Margaret Sullivan Pepe
Download or read book The Statistical Evaluation of Medical Tests for Classification and Prediction written by Margaret Sullivan Pepe and published by OUP Oxford. This book was released on 2003-03-13 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes statistical techniques for the design and evaluation of research studies on medical diagnostic tests, screening tests, biomarkers and new technologies for classification and prediction in medicine.
Book Synopsis The Statistical Evaluation of Medical Tests for Classification and Prediction by : Margaret Sullivan Pepe
Download or read book The Statistical Evaluation of Medical Tests for Classification and Prediction written by Margaret Sullivan Pepe and published by . This book was released on 2003 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes statistical concepts and techniques for evaluating medical diagnostic tests and biomarkers for detecting disease. More generally, the techniques pertain to the statistical classification problem for predicting a dichotomous outcome. Measures for quantifying test accuracy are described including sensitivity, specificity, predictive values, diagnostic likelihood ratios and the Receiver Operating Characteristic Curve that is commonly used for continuous and ordinal valued tests. Statistical procedures are presented for estimating and comparing them. Regression frameworks for assessing factors that influence test accuracy and for comparing tests while adjusting for such factors are presented. This book presents many worked examples of real data and should be of interest to practicing statisticians or quantitative researchers involved in the development of tests for classification or prediction in medicine.
Book Synopsis Statistical Methods in Diagnostic Medicine by : Xiao-Hua Zhou
Download or read book Statistical Methods in Diagnostic Medicine written by Xiao-Hua Zhou and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.
Book Synopsis An Introduction to Model-Based Survey Sampling with Applications by : Ray Chambers
Download or read book An Introduction to Model-Based Survey Sampling with Applications written by Ray Chambers and published by OUP Oxford. This book was released on 2012-01-12 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.
Book Synopsis Topics in Biostatistics by : Walter T. Ambrosius
Download or read book Topics in Biostatistics written by Walter T. Ambrosius and published by Springer Science & Business Media. This book was released on 2007-07-06 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a multidisciplinary survey of biostatics methods, each illustrated with hands-on examples. It introduces advanced methods in statistics, including how to choose and work with statistical packages. Specific topics of interest include microarray analysis, missing data techniques, power and sample size, statistical methods in genetics. The book is an essential resource for researchers at every level of their career.
Book Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben
Download or read book Fundamentals of Clinical Data Science written by Pieter Kubben and published by Springer. This book was released on 2018-12-21 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Book Synopsis Statistical Evaluation of Diagnostic Performance by : Kelly H. Zou
Download or read book Statistical Evaluation of Diagnostic Performance written by Kelly H. Zou and published by CRC Press. This book was released on 2016-04-19 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis Epidemiology, Biostatistics, and Preventive Medicine by : James F. Jekel
Download or read book Epidemiology, Biostatistics, and Preventive Medicine written by James F. Jekel and published by Elsevier Health Sciences. This book was released on 2007-01-01 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: You'll find the latest on healthcare policy and financing, infectious diseases, chronic disease, and disease prevention technology.
Book Synopsis The Handbook of Medical Image Perception and Techniques by : Ehsan Samei
Download or read book The Handbook of Medical Image Perception and Techniques written by Ehsan Samei and published by Cambridge University Press. This book was released on 2018-12-13 with total page 1478 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art review of key topics in medical image perception science and practice, including associated techniques, illustrations and examples. This second edition contains extensive updates and substantial new content. Written by key figures in the field, it covers a wide range of topics including signal detection, image interpretation and advanced image analysis (e.g. deep learning) techniques for interpretive and computational perception. It provides an overview of the key techniques of medical image perception and observer performance research, and includes examples and applications across clinical disciplines including radiology, pathology and oncology. A final chapter discusses the future prospects of medical image perception and assesses upcoming challenges and possibilities, enabling readers to identify new areas for research. Written for both newcomers to the field and experienced researchers and clinicians, this book provides a comprehensive reference for those interested in medical image perception as means to advance knowledge and improve human health.
Book Synopsis Clinical Prediction Models by : Ewout W. Steyerberg
Download or read book Clinical Prediction Models written by Ewout W. Steyerberg and published by Springer. This book was released on 2019-07-22 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies
Book Synopsis Design and Analysis of Clinical Trials for Predictive Medicine by : Shigeyuki Matsui
Download or read book Design and Analysis of Clinical Trials for Predictive Medicine written by Shigeyuki Matsui and published by CRC Press. This book was released on 2015-03-19 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and Analysis of Clinical Trials for Predictive Medicine provides statistical guidance on conducting clinical trials for predictive medicine. It covers statistical topics relevant to the main clinical research phases for developing molecular diagnostics and therapeutics-from identifying molecular biomarkers using DNA microarrays to confirming
Book Synopsis Advanced Bayesian Methods for Medical Test Accuracy by : Lyle D. Broemeling
Download or read book Advanced Bayesian Methods for Medical Test Accuracy written by Lyle D. Broemeling and published by CRC Press. This book was released on 2016-04-19 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in many areas of medicine and biology, Bayesian methods are particularly attractive tools for the design of clinical trials and diagnostic tests, which are based on established information, usually from related previous studies. Advanced Bayesian Methods for Medical Test Accuracy begins with a review of the usual measures such as specificity
Book Synopsis Celebrating Statistics by : A. C. Davison
Download or read book Celebrating Statistics written by A. C. Davison and published by OUP Oxford. This book was released on 2005-09-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sir David Cox is among the most important statisticians of the past half-century. He has made pioneering and highly influential contributions to a uniquely wide range of topics in statistics and applied probability. His teaching has inspired generations of students, and many well-known researchers have begun as his graduate students or have worked with him at early stages of their careers. Legions of others have been stimulated and enlightened by the clear, concise, and direct exposition exemplified by his many books, papers, and lectures. This book presents a collection of chapters by major statistical researchers who attended a conference held at the University of Neuchatel in July 2004 to celebrate David Cox's 80th birthday. Each chapter is carefully crafted and collectively present current developments across a wide range of research areas from epidemiology, environmental science, finance, computing and medicine. Edited by Anthony Davison, Ecole Polytechnique Federale de Lausanne, Switzerland; Yadolah Dodge, University of Neuchatel, Switzerland; and N. Wermuth, Goteborg University, Sweden, with chapters by Ole E. Barndorff-Nielsen, Sarah C. Darby, Christina Davies, Peter J. Diggle, David Firth, Peter Hall, Valerie S. Isham, Kung-Yee Liang, Peter McCullagh, Paul McGale, Amilcare Porporato, Nancy Reid, Brian D. Ripley, Ignacio Rodriguez-Iturbe, Andrea Rotnitzky, Neil Shephard, Scott L. Zeger, and including a brief biography of David Cox, this book is suitable for students of statistics, epidemiology, environmental science, finance, computing and medicine, and academic and practising statisticians.
Book Synopsis Statistical Modelling in GLIM 4 by : Murray A. Aitkin
Download or read book Statistical Modelling in GLIM 4 written by Murray A. Aitkin and published by Oxford University Press, USA. This book was released on 2005 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This text examines the theory of statistical modelling with generalised linear models. It also looks at applications of the theory to practical problems, using the GLIM4 package"--Provided by publisher.
Book Synopsis Analysis of Longitudinal Data by : Peter Diggle
Download or read book Analysis of Longitudinal Data written by Peter Diggle and published by Oxford University Press, USA. This book was released on 2013-03-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition has been completely revised and expanded to become the most up-to-date and thorough professional reference text in this fast-moving area of biostatistics. It contains an additional two chapters on fully parametric models for discrete repeated measures data and statistical models for time-dependent predictors.
Book Synopsis Statistical Testing Strategies in the Health Sciences by : Albert Vexler
Download or read book Statistical Testing Strategies in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2017-12-19 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Testing Strategies in the Health Sciences provides a compendium of statistical approaches for decision making, ranging from graphical methods and classical procedures through computationally intensive bootstrap strategies to advanced empirical likelihood techniques. It bridges the gap between theoretical statistical methods and practical procedures applied to the planning and analysis of health-related experiments. The book is organized primarily based on the type of questions to be answered by inference procedures or according to the general type of mathematical derivation. It establishes the theoretical framework for each method, with a substantial amount of chapter notes included for additional reference. It then focuses on the practical application for each concept, providing real-world examples that can be easily implemented using corresponding statistical software code in R and SAS. The book also explains the basic elements and methods for constructing correct and powerful statistical decision-making processes to be adapted for complex statistical applications. With techniques spanning robust statistical methods to more computationally intensive approaches, this book shows how to apply correct and efficient testing mechanisms to various problems encountered in medical and epidemiological studies, including clinical trials. Theoretical statisticians, medical researchers, and other practitioners in epidemiology and clinical research will appreciate the book’s novel theoretical and applied results. The book is also suitable for graduate students in biostatistics, epidemiology, health-related sciences, and areas pertaining to formal decision-making mechanisms.