Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Surfaces Of Nonpositive Curvature
Download Surfaces Of Nonpositive Curvature full books in PDF, epub, and Kindle. Read online Surfaces Of Nonpositive Curvature ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Surfaces of Nonpositive Curvature by : Patrick Eberlein
Download or read book Surfaces of Nonpositive Curvature written by Patrick Eberlein and published by American Mathematical Soc.. This book was released on 1979 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a detailed paper concerning complete noncompact 2-dimensional Riemannian manifolds M with nonpositive Gaussian curvature.
Book Synopsis Metric Spaces, Convexity and Nonpositive Curvature by : Athanase Papadopoulos
Download or read book Metric Spaces, Convexity and Nonpositive Curvature written by Athanase Papadopoulos and published by European Mathematical Society. This book was released on 2005 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Metric Spaces of Non-Positive Curvature by : Martin R. Bridson
Download or read book Metric Spaces of Non-Positive Curvature written by Martin R. Bridson and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
Download or read book Geometry III written by Yu.D. Burago and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume devoted to the extremely clear and intrinsically beautiful theory of two-dimensional surfaces in Euclidean spaces. The main focus is on the connection between the theory of embedded surfaces and two-dimensional Riemannian geometry, and the influence of properties of intrinsic metrics on the geometry of surfaces.
Book Synopsis Sur les Groupes Hyperboliques d’après Mikhael Gromov by : Etienne Ghys
Download or read book Sur les Groupes Hyperboliques d’après Mikhael Gromov written by Etienne Ghys and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of hyperbolic groups has its starting point in a fundamental paper by M. Gromov, published in 1987. These are finitely generated groups that share important properties with negatively curved Riemannian manifolds. This monograph is intended to be an introduction to part of Gromov's theory, giving basic definitions, some of the most important examples, various properties of hyperbolic groups, and an application to the construction of infinite torsion groups. The main theme is the relevance of geometric ideas to the understanding of finitely generated groups. In addition to chapters written by the editors, contributions by W. Ballmann, A. Haefliger, E. Salem, R. Strebel, and M. Troyanov are also included. The book will be particularly useful to researchers in combinatorial group theory, Riemannian geometry, and theoretical physics, as well as post-graduate students interested in these fields.
Book Synopsis Lectures on Spaces of Nonpositive Curvature by : Werner Ballmann
Download or read book Lectures on Spaces of Nonpositive Curvature written by Werner Ballmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
Book Synopsis Geometry with an Introduction to Cosmic Topology by : Michael P. Hitchman
Download or read book Geometry with an Introduction to Cosmic Topology written by Michael P. Hitchman and published by Jones & Bartlett Learning. This book was released on 2009 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.
Book Synopsis Surfaces with Constant Mean Curvature by : Katsuei Kenmotsu
Download or read book Surfaces with Constant Mean Curvature written by Katsuei Kenmotsu and published by American Mathematical Soc.. This book was released on 2003 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.
Book Synopsis Modern Differential Geometry of Curves and Surfaces with Mathematica by : Elsa Abbena
Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica written by Elsa Abbena and published by CRC Press. This book was released on 2017-09-06 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
Book Synopsis Geometry of Nonpositively Curved Manifolds by : Patrick Eberlein
Download or read book Geometry of Nonpositively Curved Manifolds written by Patrick Eberlein and published by University of Chicago Press. This book was released on 1996 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from the foundations, the author presents an almost entirely self-contained treatment of differentiable spaces of nonpositive curvature, focusing on the symmetric spaces in which every geodesic lies in a flat Euclidean space of dimension at least two. The book builds to a discussion of the Mostow Rigidity Theorem and its generalizations, and concludes by exploring the relationship in nonpositively curved spaces between geometric and algebraic properties of the fundamental group. This introduction to the geometry of symmetric spaces of non-compact type will serve as an excellent guide for graduate students new to the material, and will also be a useful reference text for mathematicians already familiar with the subject.
Book Synopsis Nonpositive Curvature: Geometric and Analytic Aspects by : Jürgen Jost
Download or read book Nonpositive Curvature: Geometric and Analytic Aspects written by Jürgen Jost and published by Birkhäuser. This book was released on 2012-12-06 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.
Book Synopsis Curves and Surfaces by : Sebastián Montiel
Download or read book Curves and Surfaces written by Sebastián Montiel and published by American Mathematical Soc.. This book was released on 2009 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a focused point of view on the differential geometry of curves and surfaces. This monograph treats the Gauss - Bonnet theorem and discusses the Euler characteristic. It also covers Alexandrov's theorem on embedded compact surfaces in R3 with constant mean curvature.
Book Synopsis Differential Geometry of Curves and Surfaces by : Kristopher Tapp
Download or read book Differential Geometry of Curves and Surfaces written by Kristopher Tapp and published by Springer. This book was released on 2016-09-30 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.
Book Synopsis Isometric Embedding of Riemannian Manifolds in Euclidean Spaces by : Qing Han
Download or read book Isometric Embedding of Riemannian Manifolds in Euclidean Spaces written by Qing Han and published by American Mathematical Soc.. This book was released on 2006 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.
Book Synopsis Extrinsic Geometry of Convex Surfaces by : Alekseĭ Vasilʹevich Pogorelov
Download or read book Extrinsic Geometry of Convex Surfaces written by Alekseĭ Vasilʹevich Pogorelov and published by American Mathematical Soc.. This book was released on 1973 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Brief Account of the Historical Development of Pseudospherical Surfaces from 1827 to 1887 by : Emily Coddington
Download or read book A Brief Account of the Historical Development of Pseudospherical Surfaces from 1827 to 1887 written by Emily Coddington and published by . This book was released on 1905 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Handbook of Convex Geometry by : Bozzano G Luisa
Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.