Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stock Market Prediction Using Machine Learning Methods
Download Stock Market Prediction Using Machine Learning Methods full books in PDF, epub, and Kindle. Read online Stock Market Prediction Using Machine Learning Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Information Technology and Systems by : Álvaro Rocha
Download or read book Information Technology and Systems written by Álvaro Rocha and published by Springer. This book was released on 2019-01-28 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.
Book Synopsis Introduction to Artificial Neural Systems by : Jacek M. Zurada
Download or read book Introduction to Artificial Neural Systems written by Jacek M. Zurada and published by Brooks/Cole. This book was released on 1995 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Data Mining Algorithms by : Pawel Cichosz
Download or read book Data Mining Algorithms written by Pawel Cichosz and published by John Wiley & Sons. This book was released on 2015-01-27 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Book Synopsis Handbook of Research on Smart Technology Models for Business and Industry by : Thomas, J. Joshua
Download or read book Handbook of Research on Smart Technology Models for Business and Industry written by Thomas, J. Joshua and published by IGI Global. This book was released on 2020-06-19 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in machine learning techniques and ever-increasing computing power has helped create a new generation of hardware and software technologies with practical applications for nearly every industry. As the progress has, in turn, excited the interest of venture investors, technology firms, and a growing number of clients, implementing intelligent automation in both physical and information systems has become a must in business. Handbook of Research on Smart Technology Models for Business and Industry is an essential reference source that discusses relevant abstract frameworks and the latest experimental research findings in theory, mathematical models, software applications, and prototypes in the area of smart technologies. Featuring research on topics such as digital security, renewable energy, and intelligence management, this book is ideally designed for machine learning specialists, industrial experts, data scientists, researchers, academicians, students, and business professionals seeking coverage on current smart technology models.
Download or read book ICDSMLA 2019 written by Amit Kumar and published by Springer Nature. This book was released on 2020-05-19 with total page 2010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.
Book Synopsis How can I get started Investing in the Stock Market by : Lokesh Badolia
Download or read book How can I get started Investing in the Stock Market written by Lokesh Badolia and published by Educreation Publishing. This book was released on 2016-10-27 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.
Book Synopsis ICT Innovations 2014 by : Ana Madevska Bogdanova
Download or read book ICT Innovations 2014 written by Ana Madevska Bogdanova and published by Springer. This book was released on 2014-08-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is a common ground, a starting point for each ICT system. Data needs processing, use of different technologies and state-of-the-art methods in order to obtain new knowledge, to develop new useful applications that not only ease, but also increase the quality of life. These applications use the exploration of Big Data, High throughput data, Data Warehouse, Data Mining, Bioinformatics, Robotics, with data coming from social media, sensors, scientific applications, surveillance, video and image archives, internet texts and documents, internet search indexing, medical records, business transactions, web logs, etc. Information and communication technologies have become the asset in everyday life enabling increased level of communication, processing and information exchange. This book offers a collection of selected papers presented at the Sixth International Conference on ICT Innovations held in September 2014, in Ohrid, Macedonia, with main topic World of data. The conference gathered academics, professionals and practitioners in developing solutions and systems in the industrial and business arena, especially innovative commercial implementations, novel applications of technology, and experience in applying recent ICT research advances to practical solutions.
Book Synopsis Machine Learning for Asset Management by : Emmanuel Jurczenko
Download or read book Machine Learning for Asset Management written by Emmanuel Jurczenko and published by John Wiley & Sons. This book was released on 2020-10-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Book Synopsis Empirical Asset Pricing by : Wayne Ferson
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Book Synopsis 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021 by : Rafik A. Aliev
Download or read book 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021 written by Rafik A. Aliev and published by Springer Nature. This book was released on 2022-01-04 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the 11th Conference on Theory and Applications of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence, ICSCCW-2021, held in Antalya, Turkey, on August 23–24, 2021. The general scope of the book covers uncertain computation, decision making under imperfect information, neuro-fuzzy approaches, natural language processing, and other areas. The topics of the papers include theory and application of soft computing, computing with words, image processing with soft computing, intelligent control, machine learning, fuzzy logic in data mining, soft computing in business, economics, engineering, material sciences, biomedical engineering, and health care. This book is a useful guide for academics, practitioners, and graduates in fields of soft computing and computing with words. It allows for increasing of interest in development and applying of these paradigms in various real-life fields.
Author :Erricos John Kontoghiorghes Publisher :Springer Science & Business Media ISBN 13 :1475736134 Total Pages :626 pages Book Rating :4.4/5 (757 download)
Book Synopsis Computational Methods in Decision-Making, Economics and Finance by : Erricos John Kontoghiorghes
Download or read book Computational Methods in Decision-Making, Economics and Finance written by Erricos John Kontoghiorghes and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria.
Book Synopsis Challenges and Applications of Data Analytics in Social Perspectives by : Sathiyamoorthi, V.
Download or read book Challenges and Applications of Data Analytics in Social Perspectives written by Sathiyamoorthi, V. and published by IGI Global. This book was released on 2020-12-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen
Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Book Synopsis Engineering Applications of Neural Networks by : John Macintyre
Download or read book Engineering Applications of Neural Networks written by John Macintyre and published by Springer. This book was released on 2019-05-14 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2019, held in Xersonisos, Crete, Greece, in May 2019. The 35 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on AI in energy management - industrial applications; biomedical - bioinformatics modeling; classification - learning; deep learning; deep learning - convolutional ANN; fuzzy - vulnerability - navigation modeling; machine learning modeling - optimization; ML - DL financial modeling; security - anomaly detection; 1st PEINT workshop.
Book Synopsis Emerging Trends in Data Driven Computing and Communications by : Rajeev Mathur
Download or read book Emerging Trends in Data Driven Computing and Communications written by Rajeev Mathur and published by Springer Nature. This book was released on 2021-09-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes best selected, high-quality research papers presented at International Conference on Data Driven Computing and IoT (DDCIoT 2021) organized jointly by Geetanjali Institute of Technical Studies (GITS), Udaipur, and Rajasthan Technical University, Kota, India, during March 20–21, 2021. This book presents influential ideas and systems in the field of data driven computing, information technology, and intelligent systems.
Book Synopsis Hands-On Machine Learning for Algorithmic Trading by : Stefan Jansen
Download or read book Hands-On Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2018-12-31 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key FeaturesImplement machine learning algorithms to build, train, and validate algorithmic modelsCreate your own algorithmic design process to apply probabilistic machine learning approaches to trading decisionsDevelop neural networks for algorithmic trading to perform time series forecasting and smart analyticsBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learnImplement machine learning techniques to solve investment and trading problemsLeverage market, fundamental, and alternative data to research alpha factorsDesign and fine-tune supervised, unsupervised, and reinforcement learning modelsOptimize portfolio risk and performance using pandas, NumPy, and scikit-learnIntegrate machine learning models into a live trading strategy on QuantopianEvaluate strategies using reliable backtesting methodologies for time seriesDesign and evaluate deep neural networks using Keras, PyTorch, and TensorFlowWork with reinforcement learning for trading strategies in the OpenAI GymWho this book is for Hands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.
Book Synopsis Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2018) by : A.Pasumpon Pandian
Download or read book Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2018) written by A.Pasumpon Pandian and published by Springer. This book was released on 2019-07-31 with total page 1097 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings of the International Conference on Computer Networks, Big Data and IoT (ICCBI-2018), held on December 19–20, 2018 in Madurai, India. In recent years, advances in information and communication technologies [ICT] have collectively aimed to streamline the evolution of internet applications. In this context, increasing the ubiquity of emerging internet applications with an enhanced capability to communicate in a distributed environment has become a major need for existing networking models and applications. To achieve this, Internet of Things [IoT] models have been developed to facilitate a smart interconnection and information exchange among modern objects – which plays an essential role in every aspect of our lives. Due to their pervasive nature, computer networks and IoT can easily connect and engage effectively with their network users. This vast network continuously generates data from heterogeneous devices, creating a need to utilize big data, which provides new and unprecedented opportunities to process these huge volumes of data. This International Conference on Computer Networks, Big Data, and Internet of Things [ICCBI] brings together state-of-the-art research work, which briefly describes advanced IoT applications in the era of big data. As such, it offers valuable insights for researchers and scientists involved in developing next-generation, big-data-driven IoT applications to address the real-world challenges in building a smartly connected environment.