Author : H.J. Kushner
Publisher : Springer Science & Business Media
ISBN 13 : 1468493523
Total Pages : 273 pages
Book Rating : 4.4/5 (684 download)
Book Synopsis Stochastic Approximation Methods for Constrained and Unconstrained Systems by : H.J. Kushner
Download or read book Stochastic Approximation Methods for Constrained and Unconstrained Systems written by H.J. Kushner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with a powerful and convenient approach to a great variety of types of problems of the recursive monte-carlo or stochastic approximation type. Such recu- sive algorithms occur frequently in stochastic and adaptive control and optimization theory and in statistical esti- tion theory. Typically, a sequence {X } of estimates of a n parameter is obtained by means of some recursive statistical th st procedure. The n estimate is some function of the n_l estimate and of some new observational data, and the aim is to study the convergence, rate of convergence, and the pa- metric dependence and other qualitative properties of the - gorithms. In this sense, the theory is a statistical version of recursive numerical analysis. The approach taken involves the use of relatively simple compactness methods. Most standard results for Kiefer-Wolfowitz and Robbins-Monro like methods are extended considerably. Constrained and unconstrained problems are treated, as is the rate of convergence problem. While the basic method is rather simple, it can be elaborated to allow a broad and deep coverage of stochastic approximation like problems. The approach, relating algorithm behavior to qualitative properties of deterministic or stochastic differ ential equations, has advantages in algorithm conceptualiza tion and design. It is often possible to obtain an intuitive understanding of algorithm behavior or qualitative dependence upon parameters, etc., without getting involved in a great deal of deta~l.