Stochastic Recursive Algorithms for Optimization

Download Stochastic Recursive Algorithms for Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447142853
Total Pages : 310 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Recursive Algorithms for Optimization by : S. Bhatnagar

Download or read book Stochastic Recursive Algorithms for Optimization written by S. Bhatnagar and published by Springer. This book was released on 2012-08-11 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.

Stochastic Optimization

Download Stochastic Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540345604
Total Pages : 551 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization by : Johannes Schneider

Download or read book Stochastic Optimization written by Johannes Schneider and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.

Stochastic Optimization

Download Stochastic Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475765940
Total Pages : 438 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization by : Stanislav Uryasev

Download or read book Stochastic Optimization written by Stanislav Uryasev and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.

First-order and Stochastic Optimization Methods for Machine Learning

Download First-order and Stochastic Optimization Methods for Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030395685
Total Pages : 591 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

Download or read book First-order and Stochastic Optimization Methods for Machine Learning written by Guanghui Lan and published by Springer Nature. This book was released on 2020-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Stochastic Optimization Methods

Download Stochastic Optimization Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662462141
Total Pages : 389 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization Methods by : Kurt Marti

Download or read book Stochastic Optimization Methods written by Kurt Marti and published by Springer. This book was released on 2015-02-21 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.

Introduction to Stochastic Search and Optimization

Download Introduction to Stochastic Search and Optimization PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471441902
Total Pages : 620 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Stochastic Search and Optimization by : James C. Spall

Download or read book Introduction to Stochastic Search and Optimization written by James C. Spall and published by John Wiley & Sons. This book was released on 2005-03-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Algorithms for Optimization

Download Algorithms for Optimization PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262039427
Total Pages : 521 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Optimization by : Mykel J. Kochenderfer

Download or read book Algorithms for Optimization written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2019-03-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Stochastic Adaptive Search for Global Optimization

Download Stochastic Adaptive Search for Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441991824
Total Pages : 236 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Adaptive Search for Global Optimization by : Z.B. Zabinsky

Download or read book Stochastic Adaptive Search for Global Optimization written by Z.B. Zabinsky and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods.

Stochastic Optimization Models in Finance

Download Stochastic Optimization Models in Finance PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981256800X
Total Pages : 756 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization Models in Finance by : William T. Ziemba

Download or read book Stochastic Optimization Models in Finance written by William T. Ziemba and published by World Scientific. This book was released on 2006 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 412 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Jason Brownlee

Download or read book Optimization for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2021-09-22 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.

Stochastic Global Optimization

Download Stochastic Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387747400
Total Pages : 269 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Global Optimization by : Anatoly Zhigljavsky

Download or read book Stochastic Global Optimization written by Anatoly Zhigljavsky and published by Springer Science & Business Media. This book was released on 2007-11-20 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the main methodological and theoretical developments in stochastic global optimization. It is designed to inspire readers to explore various stochastic methods of global optimization by clearly explaining the main methodological principles and features of the methods. Among the book’s features is a comprehensive study of probabilistic and statistical models underlying the stochastic optimization algorithms.

Stochastic Optimization for Large-scale Machine Learning

Download Stochastic Optimization for Large-scale Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000505618
Total Pages : 189 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimization for Large-scale Machine Learning by : Vinod Kumar Chauhan

Download or read book Stochastic Optimization for Large-scale Machine Learning written by Vinod Kumar Chauhan and published by CRC Press. This book was released on 2021-11-18 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Multistage Stochastic Optimization

Download Multistage Stochastic Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319088432
Total Pages : 309 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Multistage Stochastic Optimization by : Georg Ch. Pflug

Download or read book Multistage Stochastic Optimization written by Georg Ch. Pflug and published by Springer. This book was released on 2014-11-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.

Stochastic Global Optimization

Download Stochastic Global Optimization PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814299219
Total Pages : 722 pages
Book Rating : 4.8/5 (142 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Global Optimization by : Gade Pandu Rangaiah

Download or read book Stochastic Global Optimization written by Gade Pandu Rangaiah and published by World Scientific. This book was released on 2010 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller

Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes

Download Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128173920
Total Pages : 310 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes by : Ch. Venkateswarlu

Download or read book Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes written by Ch. Venkateswarlu and published by Elsevier. This book was released on 2019-11-18 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic global optimization methods and applications to chemical, biochemical, pharmaceutical and environmental processes presents various algorithms that include the genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony optimization, and cuckoo search algorithm. The design and analysis of these algorithms is studied by applying them to solve various base case and complex optimization problems concerning chemical, biochemical, pharmaceutical, and environmental engineering processes. Design and implementation of various classical and advanced optimization strategies to solve a wide variety of optimization problems makes this book beneficial to graduate students, researchers, and practicing engineers working in multiple domains. This book mainly focuses on stochastic, evolutionary, and artificial intelligence optimization algorithms with a special emphasis on their design, analysis, and implementation to solve complex optimization problems and includes a number of real applications concerning chemical, biochemical, pharmaceutical, and environmental engineering processes.

Convex and Stochastic Optimization

Download Convex and Stochastic Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030149773
Total Pages : 320 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Convex and Stochastic Optimization by : J. Frédéric Bonnans

Download or read book Convex and Stochastic Optimization written by J. Frédéric Bonnans and published by Springer. This book was released on 2019-04-24 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.

Stochastic Approximation and Optimization of Random Systems

Download Stochastic Approximation and Optimization of Random Systems PDF Online Free

Author :
Publisher : Birkhauser
ISBN 13 : 9780817627331
Total Pages : 128 pages
Book Rating : 4.6/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Approximation and Optimization of Random Systems by : Lennart Ljung

Download or read book Stochastic Approximation and Optimization of Random Systems written by Lennart Ljung and published by Birkhauser. This book was released on 1992 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: