Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Some Aspects Of Bayesian Robustness
Download Some Aspects Of Bayesian Robustness full books in PDF, epub, and Kindle. Read online Some Aspects Of Bayesian Robustness ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robust Bayesian Analysis by : David Rios Insua
Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.
Book Synopsis Bayesian Robustness by : James O. Berger
Download or read book Bayesian Robustness written by James O. Berger and published by IMS. This book was released on 1996 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bayesian Statistics the Fun Way by : Will Kurt
Download or read book Bayesian Statistics the Fun Way written by Will Kurt and published by No Starch Press. This book was released on 2019-07-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis Intelligent and Other Computational Techniques in Insurance by : A. F. Shapiro
Download or read book Intelligent and Other Computational Techniques in Insurance written by A. F. Shapiro and published by World Scientific. This book was released on 2003 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in the theory and implementation of intelligent and other computational techniques in the insurance industry. The paradigms covered encompass artificial neural networks and fuzzy systems, including clustering versions, optimization and resampling methods, algebraic and Bayesian models, decision trees and regression splines. Thus, the focus is not just on intelligent techniques, although these constitute a major component; the book also deals with other current computational paradigms that are likely to impact on the industry. The application areas include asset allocation, asset and liability management, cash-flow analysis, claim costs, classification, fraud detection, insolvency, investments, loss distributions, marketing, pricing and premiums, rate-making, retention, survival analysis, and underwriting.
Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort
Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Book Synopsis Journal of Statistical Planning and Inference by :
Download or read book Journal of Statistical Planning and Inference written by and published by . This book was released on 1993 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Bayesian Analysis by : Jayanta K. Ghosh
Download or read book An Introduction to Bayesian Analysis written by Jayanta K. Ghosh and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.
Book Synopsis Bayesian Thinking, Modeling and Computation by :
Download or read book Bayesian Thinking, Modeling and Computation written by and published by Elsevier. This book was released on 2005-11-29 with total page 1062 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics
Book Synopsis Recent Advances in Statistics and Probability by : José Pérez Vilaplana
Download or read book Recent Advances in Statistics and Probability written by José Pérez Vilaplana and published by VSP. This book was released on 1994-01-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, significant progress has been made in statistical theory. New methodologies have emerged, as an attempt to bridge the gap between theoretical and applied approaches. This volume presents some of these developments, which already have had a significant impact on modeling, design, and analysis of statistical experiments. The chapters cover a wide range of topics of current interest in applied as well as theoretical statistics and probability. They include some aspects of the design of experiments in which there are current developments: regression methods, decision theory, nonparametric theory, simulation and computational statistics, time series, reliability, and queueing networks. Also included are chapters on some aspects of probability theory, which, apart from their intrinsic mathematical interest, have significant applications in statistics.
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Asymptotics, Nonparametrics, and Time Series by : Subir Ghosh
Download or read book Asymptotics, Nonparametrics, and Time Series written by Subir Ghosh and published by CRC Press. This book was released on 1999-02-18 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
Book Synopsis Doing Bayesian Data Analysis by : John Kruschke
Download or read book Doing Bayesian Data Analysis written by John Kruschke and published by Academic Press. This book was released on 2010-11-25 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and 'rusty' calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and BUGS software - Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). - Coverage of experiment planning - R and BUGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment
Book Synopsis An Author and Permuted Title Index to Selected Statistical Journals by : Brian L. Joiner
Download or read book An Author and Permuted Title Index to Selected Statistical Journals written by Brian L. Joiner and published by . This book was released on 1970 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.
Book Synopsis Statistical Theory and Method Abstracts by :
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 1999 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistics in the Public Interest by : Alicia L. Carriquiry
Download or read book Statistics in the Public Interest written by Alicia L. Carriquiry and published by Springer Nature. This book was released on 2022-04-22 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume surveys a variety of topics in statistics and the social sciences in memory of the late Stephen Fienberg. The book collects submissions from a wide range of contemporary authors to explore the fields in which Fienberg made significant contributions, including contingency tables and log-linear models, privacy and confidentiality, forensics and the law, the decennial census and other surveys, the National Academies, Bayesian theory and methods, causal inference and causes of effects, mixed membership models, and computing and machine learning. Each section begins with an overview of Fienberg’s contributions and continues with chapters by Fienberg’s students, colleagues, and collaborators exploring recent advances and the current state of research on the topic. In addition, this volume includes a biographical introduction as well as a memorial concluding chapter comprised of entries from Stephen and Joyce Fienberg’s close friends, former students, colleagues, and other loved ones, as well as a photographic tribute.