Multivariate Statistical Modelling Based on Generalized Linear Models

Download Multivariate Statistical Modelling Based on Generalized Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489900101
Total Pages : 440 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Statistical Modelling Based on Generalized Linear Models by : Ludwig Fahrmeir

Download or read book Multivariate Statistical Modelling Based on Generalized Linear Models written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Linear and Generalized Linear Mixed Models and Their Applications

Download Linear and Generalized Linear Mixed Models and Their Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071612824
Total Pages : 343 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Linear and Generalized Linear Mixed Models and Their Applications by : Jiming Jiang

Download or read book Linear and Generalized Linear Mixed Models and Their Applications written by Jiming Jiang and published by Springer Nature. This book was released on 2021-03-22 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data

Download Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 9780199533022
Total Pages : 0 pages
Book Rating : 4.5/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data by : Ludwig Fahrmeir

Download or read book Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data written by Ludwig Fahrmeir and published by OUP Oxford. This book was released on 2011-04-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together recent advances in smoothing and semiparametric regression from a Bayesian perspective, this book demonstrates, with worked examples, the application of these statistical methods to a variety of fields including forestry, development economics, medicine and marketing.

Regression for Categorical Data

Download Regression for Categorical Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139499580
Total Pages : 573 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Regression for Categorical Data by : Gerhard Tutz

Download or read book Regression for Categorical Data written by Gerhard Tutz and published by Cambridge University Press. This book was released on 2011-11-21 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic and advanced concepts of categorical regression with a focus on the structuring constituents of regression, including regularization techniques to structure predictors. In addition to standard methods such as the logit and probit model and extensions to multivariate settings, the author presents more recent developments in flexible and high-dimensional regression, which allow weakening of assumptions on the structuring of the predictor and yield fits that are closer to the data. A generalized linear model is used as a unifying framework whenever possible in particular parametric models that are treated within this framework. Many topics not normally included in books on categorical data analysis are treated here, such as nonparametric regression; selection of predictors by regularized estimation procedures; ternative models like the hurdle model and zero-inflated regression models for count data; and non-standard tree-based ensemble methods. The book is accompanied by an R package that contains data sets and code for all the examples.

Generalized Additive Models

Download Generalized Additive Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584884746
Total Pages : 412 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Generalized Additive Models by : Simon Wood

Download or read book Generalized Additive Models written by Simon Wood and published by CRC Press. This book was released on 2006-02-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.

Methods and Applications of Longitudinal Data Analysis

Download Methods and Applications of Longitudinal Data Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128014822
Total Pages : 531 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Methods and Applications of Longitudinal Data Analysis by : Xian Liu

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Asymptotic Analysis of Mixed Effects Models

Download Asymptotic Analysis of Mixed Effects Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498700462
Total Pages : 252 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Analysis of Mixed Effects Models by : Jiming Jiang

Download or read book Asymptotic Analysis of Mixed Effects Models written by Jiming Jiang and published by CRC Press. This book was released on 2017-09-19 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.

Generalized, Linear, and Mixed Models

Download Generalized, Linear, and Mixed Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118209966
Total Pages : 281 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Generalized, Linear, and Mixed Models by : Charles E. McCulloch

Download or read book Generalized, Linear, and Mixed Models written by Charles E. McCulloch and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimation A new chapter that treats shared random effects models, latent class models, and properties of models A revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositions Expanded coverage of marginal versus conditional models Numerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers.

Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data

Download Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000876659
Total Pages : 409 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data by : Syed Ejaz Ahmed

Download or read book Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data written by Syed Ejaz Ahmed and published by CRC Press. This book was released on 2023-05-25 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some post-estimation and predictions strategies for the host of useful statistical models with applications in data science. It combines statistical learning and machine learning techniques in a unique and optimal way. It is well-known that machine learning methods are subject to many issues relating to bias, and consequently the mean squared error and prediction error may explode. For this reason, we suggest shrinkage strategies to control the bias by combining a submodel selected by a penalized method with a model with many features. Further, the suggested shrinkage methodology can be successfully implemented for high dimensional data analysis. Many researchers in statistics and medical sciences work with big data. They need to analyse this data through statistical modelling. Estimating the model parameters accurately is an important part of the data analysis. This book may be a repository for developing improve estimation strategies for statisticians. This book will help researchers and practitioners for their teaching and advanced research, and is an excellent textbook for advanced undergraduate and graduate courses involving shrinkage, statistical, and machine learning. The book succinctly reveals the bias inherited in machine learning method and successfully provides tools, tricks and tips to deal with the bias issue. Expertly sheds light on the fundamental reasoning for model selection and post estimation using shrinkage and related strategies. This presentation is fundamental, because shrinkage and other methods appropriate for model selection and estimation problems and there is a growing interest in this area to fill the gap between competitive strategies. Application of these strategies to real life data set from many walks of life. Analytical results are fully corroborated by numerical work and numerous worked examples are included in each chapter with numerous graphs for data visualization. The presentation and style of the book clearly makes it accessible to a broad audience. It offers rich, concise expositions of each strategy and clearly describes how to use each estimation strategy for the problem at hand. This book emphasizes that statistics/statisticians can play a dominant role in solving Big Data problems, and will put them on the precipice of scientific discovery. The book contributes novel methodologies for HDDA and will open a door for continued research in this hot area. The practical impact of the proposed work stems from wide applications. The developed computational packages will aid in analyzing a broad range of applications in many walks of life.

Bayesian Hierarchical Models

Download Bayesian Hierarchical Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429532903
Total Pages : 487 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Hierarchical Models by : Peter D. Congdon

Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website

New Developments for Embracing Genomic Selection in Breeding Applications

Download New Developments for Embracing Genomic Selection in Breeding Applications PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889744345
Total Pages : 197 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis New Developments for Embracing Genomic Selection in Breeding Applications by : Diego Jarquin

Download or read book New Developments for Embracing Genomic Selection in Breeding Applications written by Diego Jarquin and published by Frontiers Media SA. This book was released on 2022-02-18 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Generalized Linear Mixed Models

Download Generalized Linear Mixed Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498755585
Total Pages : 671 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Mixed Models by : Walter W. Stroup

Download or read book Generalized Linear Mixed Models written by Walter W. Stroup and published by CRC Press. This book was released on 2024-05-21 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs. Key Features: • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family – classical and advanced models. • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices. • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design. • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate. • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs. Walt Stroup is an Emeritus Professor of Statistics. He served on the University of Nebraska statistics faculty for over 40 years, specializing in statistical modeling and statistical design. He is a Fellow of the American Statistical Association, winner of the University of Nebraska Outstanding Teaching and Innovative Curriculum Award and author or co-author of three books on mixed models and their extensions. Marina Ptukhina (Pa-too-he-nuh), PhD, is an Associate Professor of Statistics at Whitman College. She is interested in statistical modeling, design and analysis of research studies and their applications. Her research includes applications of statistics to economics, biostatistics and statistical education. Ptukhina earned a PhD in Statistics from the University of Nebraska-Lincoln, a Master of Science degree in Mathematics from Texas Tech University and a Specialist degree in Management from The National Technical University "Kharkiv Polytechnic Institute." Julie Garai, PhD, is a Data Scientist at Loop. She earned her PhD in Statistics from the University of Nebraska-Lincoln and a bachelor’s degree in Mathematics and Spanish from Doane College. Dr Garai actively collaborates with statisticians, psychologists, ecologists, forest scientists, software engineers, and business leaders in academia and industry. In her spare time, she enjoys leisurely walks with her dogs, dance parties with her children, and playing the trombone.

Mixed Models

Download Mixed Models PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118091574
Total Pages : 768 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Mixed Models by : Eugene Demidenko

Download or read book Mixed Models written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2013-08-05 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.

Model Selection and Multimodel Inference

Download Model Selection and Multimodel Inference PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387224564
Total Pages : 512 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Model Selection and Multimodel Inference by : Kenneth P. Burnham

Download or read book Model Selection and Multimodel Inference written by Kenneth P. Burnham and published by Springer Science & Business Media. This book was released on 2007-05-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.

Generalized Linear Models for Insurance Rating

Download Generalized Linear Models for Insurance Rating PDF Online Free

Author :
Publisher :
ISBN 13 : 9780996889728
Total Pages : 106 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Models for Insurance Rating by : Mark Goldburd

Download or read book Generalized Linear Models for Insurance Rating written by Mark Goldburd and published by . This book was released on 2016-06-08 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational and Methodological Statistics and Biostatistics

Download Computational and Methodological Statistics and Biostatistics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030421961
Total Pages : 543 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Computational and Methodological Statistics and Biostatistics by : Andriëtte Bekker

Download or read book Computational and Methodological Statistics and Biostatistics written by Andriëtte Bekker and published by Springer Nature. This book was released on 2020-08-10 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the statistical domain, certain topics have received considerable attention during the last decade or so, necessitated by the growth and evolution of data and theoretical challenges. This growth has invariably been accompanied by computational advancement, which has presented end users as well as researchers with the necessary opportunities to handle data and implement modelling solutions for statistical purposes. Showcasing the interplay among a variety of disciplines, this book offers pioneering theoretical and applied solutions to practice-oriented problems. As a carefully curated collection of prominent international thought leaders, it fosters collaboration between statisticians and biostatisticians and provides an array of thought processes and tools to its readers. The book thereby creates an understanding and appreciation of recent developments as well as an implementation of these contributions within the broader framework of both academia and industry. Computational and Methodological Statistics and Biostatistics is composed of three main themes: • Recent developments in theory and applications of statistical distributions;• Recent developments in supervised and unsupervised modelling;• Recent developments in biostatistics; and also features programming code and accompanying algorithms to enable readers to replicate and implement methodologies. Therefore, this monograph provides a concise point of reference for a variety of current trends and topics within the statistical domain. With interdisciplinary appeal, it will be useful to researchers, graduate students, and practitioners in statistics, biostatistics, clinical methodology, geology, data science, and actuarial science, amongst others.

Generalized Linear Models for Insurance Data

Download Generalized Linear Models for Insurance Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139470477
Total Pages : 207 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Models for Insurance Data by : Piet de Jong

Download or read book Generalized Linear Models for Insurance Data written by Piet de Jong and published by Cambridge University Press. This book was released on 2008-02-28 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.