Recurrent Neural Networks for Prediction

Download Recurrent Neural Networks for Prediction PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 318 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks for Prediction by : Danilo P. Mandic

Download or read book Recurrent Neural Networks for Prediction written by Danilo P. Mandic and published by . This book was released on 2001 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks consist of interconnected groups of neurons which function as processing units. Through the application of neural networks, the capabilities of conventional digital signal processing techniques can be significantly enhanced.

Fundamentals of Neural Networks

Download Fundamentals of Neural Networks PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 : 9780133367690
Total Pages : 300 pages
Book Rating : 4.3/5 (676 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Neural Networks by : Fausett

Download or read book Fundamentals of Neural Networks written by Fausett and published by Prentice Hall. This book was released on 1994 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Neural Networks and Deep Learning

Download Neural Networks and Deep Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319944630
Total Pages : 512 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Deep Learning by : Charu C. Aggarwal

Download or read book Neural Networks and Deep Learning written by Charu C. Aggarwal and published by Springer. This book was released on 2018-08-25 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Recurrent Neural Networks

Download Recurrent Neural Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420049176
Total Pages : 414 pages
Book Rating : 4.0/5 (491 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks by : Larry Medsker

Download or read book Recurrent Neural Networks written by Larry Medsker and published by CRC Press. This book was released on 1999-12-20 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: With existent uses ranging from motion detection to music synthesis to financial forecasting, recurrent neural networks have generated widespread attention. The tremendous interest in these networks drives Recurrent Neural Networks: Design and Applications, a summary of the design, applications, current research, and challenges of this subfield of artificial neural networks. This overview incorporates every aspect of recurrent neural networks. It outlines the wide variety of complex learning techniques and associated research projects. Each chapter addresses architectures, from fully connected to partially connected, including recurrent multilayer feedforward. It presents problems involving trajectories, control systems, and robotics, as well as RNN use in chaotic systems. The authors also share their expert knowledge of ideas for alternate designs and advances in theoretical aspects. The dynamical behavior of recurrent neural networks is useful for solving problems in science, engineering, and business. This approach will yield huge advances in the coming years. Recurrent Neural Networks illuminates the opportunities and provides you with a broad view of the current events in this rich field.

Recurrent Neural Networks

Download Recurrent Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030899292
Total Pages : 130 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks by : Fathi M. Salem

Download or read book Recurrent Neural Networks written by Fathi M. Salem and published by Springer Nature. This book was released on 2022-01-03 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author’s approach enables strategic co-training of output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications.

Supervised Sequence Labelling with Recurrent Neural Networks

Download Supervised Sequence Labelling with Recurrent Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642247970
Total Pages : 148 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Supervised Sequence Labelling with Recurrent Neural Networks by : Alex Graves

Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Handbook on Neural Information Processing

Download Handbook on Neural Information Processing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642366570
Total Pages : 547 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Handbook on Neural Information Processing by : Monica Bianchini

Download or read book Handbook on Neural Information Processing written by Monica Bianchini and published by Springer Science & Business Media. This book was released on 2013-04-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.

Recurrent Neural Networks for Short-Term Load Forecasting

Download Recurrent Neural Networks for Short-Term Load Forecasting PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319703382
Total Pages : 74 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks for Short-Term Load Forecasting by : Filippo Maria Bianchi

Download or read book Recurrent Neural Networks for Short-Term Load Forecasting written by Filippo Maria Bianchi and published by Springer. This book was released on 2017-11-09 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.

Fundamentals of Neural Networks: Architectures, Algorithms and Applications

Download Fundamentals of Neural Networks: Architectures, Algorithms and Applications PDF Online Free

Author :
Publisher : Pearson Education India
ISBN 13 : 9788131700532
Total Pages : 472 pages
Book Rating : 4.7/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Neural Networks: Architectures, Algorithms and Applications by : Laurene V. Fausett

Download or read book Fundamentals of Neural Networks: Architectures, Algorithms and Applications written by Laurene V. Fausett and published by Pearson Education India. This book was released on 2006 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Recurrent Neural Networks with Python Quick Start Guide

Download Recurrent Neural Networks with Python Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789133661
Total Pages : 115 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks with Python Quick Start Guide by : Simeon Kostadinov

Download or read book Recurrent Neural Networks with Python Quick Start Guide written by Simeon Kostadinov and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Programming with TensorFlow

Download Programming with TensorFlow PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030570770
Total Pages : 190 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Programming with TensorFlow by : Kolla Bhanu Prakash

Download or read book Programming with TensorFlow written by Kolla Bhanu Prakash and published by Springer Nature. This book was released on 2021-01-22 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks for deep learning, Natural Language Processing (NLP), speech recognition, and general predictive analytics. The book provides a hands-on approach to TensorFlow fundamentals for a broad technical audience—from data scientists and engineers to students and researchers. The authors begin by working through some basic examples in TensorFlow before diving deeper into topics such as CNN, RNN, LSTM, and GNN. The book is written for those who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. The authors demonstrate TensorFlow projects on Single Board Computers (SBCs).

Artificial Neural Networks

Download Artificial Neural Networks PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535127047
Total Pages : 416 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks by : Joao Luis Garcia Rosa

Download or read book Artificial Neural Networks written by Joao Luis Garcia Rosa and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.

Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Machine Learning Algorithms and Applications

Download Machine Learning Algorithms and Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119769248
Total Pages : 372 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Algorithms and Applications by : Mettu Srinivas

Download or read book Machine Learning Algorithms and Applications written by Mettu Srinivas and published by John Wiley & Sons. This book was released on 2021-08-10 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.

Machine and Deep Learning Algorithms and Applications

Download Machine and Deep Learning Algorithms and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031037588
Total Pages : 107 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Machine and Deep Learning Algorithms and Applications by : Uday Shankar

Download or read book Machine and Deep Learning Algorithms and Applications written by Uday Shankar and published by Springer Nature. This book was released on 2022-05-31 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning to address a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts.

Automatic Speech and Speaker Recognition

Download Automatic Speech and Speaker Recognition PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461313678
Total Pages : 524 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Automatic Speech and Speaker Recognition by : Chin-Hui Lee

Download or read book Automatic Speech and Speaker Recognition written by Chin-Hui Lee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.

Adaptive and Natural Computing Algorithms

Download Adaptive and Natural Computing Algorithms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642049206
Total Pages : 645 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Adaptive and Natural Computing Algorithms by : Mikko Kolehmainen

Download or read book Adaptive and Natural Computing Algorithms written by Mikko Kolehmainen and published by Springer Science & Business Media. This book was released on 2009-10-15 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, held in Kuopio, Finland, in April 2009. The 63 revised full papers presented were carefully reviewed and selected from a total of 112 submissions. The papers are organized in topical sections on neutral networks, evolutionary computation, learning, soft computing, bioinformatics as well as applications.