Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118438434
Total Pages : 610 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Thomas Hillen

Download or read book Partial Differential Equations written by Thomas Hillen and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Principles of Partial Differential Equations

Download Principles of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441910956
Total Pages : 165 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Principles of Partial Differential Equations by : Alexander Komech

Download or read book Principles of Partial Differential Equations written by Alexander Komech and published by Springer Science & Business Media. This book was released on 2009-10-05 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations: Graduate Level Problems and Solutions

Download Partial Differential Equations: Graduate Level Problems and Solutions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781502911520
Total Pages : 396 pages
Book Rating : 4.9/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations: Graduate Level Problems and Solutions by : Igor Yanovsky

Download or read book Partial Differential Equations: Graduate Level Problems and Solutions written by Igor Yanovsky and published by . This book was released on 2014-10-21 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial Differential Equations: Graduate Level Problems and SolutionsBy Igor Yanovsky

Introduction to Partial Differential Equations with MATLAB

Download Introduction to Partial Differential Equations with MATLAB PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461217547
Total Pages : 549 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations with MATLAB by : Jeffery M. Cooper

Download or read book Introduction to Partial Differential Equations with MATLAB written by Jeffery M. Cooper and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.

Mathematical Physics with Partial Differential Equations

Download Mathematical Physics with Partial Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123869110
Total Pages : 431 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Physics with Partial Differential Equations by : James Kirkwood

Download or read book Mathematical Physics with Partial Differential Equations written by James Kirkwood and published by Academic Press. This book was released on 2012-01-20 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.

Partial Differential Equations in Action

Download Partial Differential Equations in Action PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319150936
Total Pages : 714 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Action by : Sandro Salsa

Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Partial Differential Equations in Action

Download Partial Differential Equations in Action PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319154168
Total Pages : 433 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Action by : Sandro Salsa

Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-05-30 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents problems and exercises at various levels of difficulty in the following areas: Classical Methods in PDEs (diffusion, waves, transport, potential equations); Basic Functional Analysis and Distribution Theory; Variational Formulation of Elliptic Problems; and Weak Formulation for Parabolic Problems and for the Wave Equation. Thanks to the broad variety of exercises with complete solutions, it can be used in all basic and advanced PDE courses.

Partial Differential Equations for Scientists and Engineers

Download Partial Differential Equations for Scientists and Engineers PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486134733
Total Pages : 450 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations for Scientists and Engineers by : Stanley J. Farlow

Download or read book Partial Differential Equations for Scientists and Engineers written by Stanley J. Farlow and published by Courier Corporation. This book was released on 2012-03-08 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical text shows how to formulate and solve partial differential equations. Coverage includes diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Solution guide available upon request. 1982 edition.

A Course on Partial Differential Equations

Download A Course on Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442922
Total Pages : 217 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course on Partial Differential Equations by : Walter Craig

Download or read book A Course on Partial Differential Equations written by Walter Craig and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrödinger equation, nonlinear hyperbolic conservation laws, and shock waves. The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.

Partial Differential Equations and Boundary-Value Problems with Applications

Download Partial Differential Equations and Boundary-Value Problems with Applications PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821868896
Total Pages : 545 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky

Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Numerical Solutions of Partial Differential Equations

Download Numerical Solutions of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764389400
Total Pages : 196 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solutions of Partial Differential Equations by : Silvia Bertoluzza

Download or read book Numerical Solutions of Partial Differential Equations written by Silvia Bertoluzza and published by Springer Science & Business Media. This book was released on 2009-03-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

Introduction to Partial Differential Equations with Applications

Download Introduction to Partial Differential Equations with Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613217X
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Complex Analysis

Download Complex Analysis PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400831156
Total Pages : 398 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Complex Analysis by : Elias M. Stein

Download or read book Complex Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2010-04-22 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Introduction to Ordinary Differential Equations

Download Introduction to Ordinary Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483226220
Total Pages : 444 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Ordinary Differential Equations by : Albert L. Rabenstein

Download or read book Introduction to Ordinary Differential Equations written by Albert L. Rabenstein and published by Academic Press. This book was released on 2014-05-12 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Beginning Partial Differential Equations

Download Beginning Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118629981
Total Pages : 452 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Beginning Partial Differential Equations by : Peter V. O'Neil

Download or read book Beginning Partial Differential Equations written by Peter V. O'Neil and published by John Wiley & Sons. This book was released on 2014-05-07 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible, combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger’s equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is organized around four themes: methods of solution for initial-boundary value problems; applications of partial differential equations; existence and properties of solutions; and the use of software to experiment with graphics and carry out computations. With a primary focus on wave and diffusion processes, Beginning Partial Differential Equations, Third Edition also includes: Proofs of theorems incorporated within the topical presentation, such as the existence of a solution for the Dirichlet problem The incorporation of MapleTM to perform computations and experiments Unusual applications, such as Poe’s pendulum Advanced topical coverage of special functions, such as Bessel, Legendre polynomials, and spherical harmonics Fourier and Laplace transform techniques to solve important problems Beginning of Partial Differential Equations, Third Edition is an ideal textbook for upper-undergraduate and first-year graduate-level courses in analysis and applied mathematics, science, and engineering.

Introduction to Partial Differential Equations

Download Introduction to Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319020994
Total Pages : 636 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations by : Peter J. Olver

Download or read book Introduction to Partial Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.