Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The Reduction Principle For Weighted Inequalities On The Cone Of Quasi Concave Functions And Applications
Download On The Reduction Principle For Weighted Inequalities On The Cone Of Quasi Concave Functions And Applications full books in PDF, epub, and Kindle. Read online On The Reduction Principle For Weighted Inequalities On The Cone Of Quasi Concave Functions And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Weighted Inequalities of Hardy Type by : Alois Kufner
Download or read book Weighted Inequalities of Hardy Type written by Alois Kufner and published by World Scientific. This book was released on 2003 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.
Author :R. Tyrrell Rockafellar Publisher :Springer Science & Business Media ISBN 13 :3642024319 Total Pages :747 pages Book Rating :4.6/5 (42 download)
Book Synopsis Variational Analysis by : R. Tyrrell Rockafellar
Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Book Synopsis Convex Optimization by : Stephen P. Boyd
Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Book Synopsis Convex Optimization & Euclidean Distance Geometry by : Jon Dattorro
Download or read book Convex Optimization & Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1990 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Linear Matrix Inequalities in System and Control Theory by : Stephen Boyd
Download or read book Linear Matrix Inequalities in System and Control Theory written by Stephen Boyd and published by SIAM. This book was released on 1994-01-01 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.
Book Synopsis Electrical & Electronics Abstracts by :
Download or read book Electrical & Electronics Abstracts written by and published by . This book was released on 1997 with total page 1904 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Concentration Inequalities by : Stéphane Boucheron
Download or read book Concentration Inequalities written by Stéphane Boucheron and published by Oxford University Press. This book was released on 2013-02-07 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
Book Synopsis Convex Analysis by : Ralph Tyrell Rockafellar
Download or read book Convex Analysis written by Ralph Tyrell Rockafellar and published by Princeton University Press. This book was released on 2015-04-29 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and the continuity and differentiability of convex functions and saddle- functions. This book has firmly established a new and vital area not only for pure mathematics but also for applications to economics and engineering. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book. There is also a guide for the reader who may be using the book as an introduction, indicating which parts are essential and which may be skipped on a first reading.
Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Book Synopsis Proximal Algorithms by : Neal Parikh
Download or read book Proximal Algorithms written by Neal Parikh and published by Now Pub. This book was released on 2013-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.
Book Synopsis Hardy-Type Inequalities by : B. Opic
Download or read book Hardy-Type Inequalities written by B. Opic and published by . This book was released on 1990-01-01 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Pareto Optimality, Game Theory and Equilibria by : Panos M. Pardalos
Download or read book Pareto Optimality, Game Theory and Equilibria written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2008-07-02 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive work examines important recent developments and modern applications in the fields of optimization, control, game theory and equilibrium programming. In particular, the concepts of equilibrium and optimality are of immense practical importance affecting decision-making problems regarding policy and strategies, and in understanding and predicting systems in different application domains, ranging from economics and engineering to military applications. The book consists of 29 survey chapters written by distinguished researchers in the above areas.
Book Synopsis An Introduction to Matrix Concentration Inequalities by : Joel Tropp
Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.
Download or read book Documentation Abstracts written by and published by . This book was released on 1995 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen
Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Book Synopsis SOC Functions and Their Applications by : Jein-Shan Chen
Download or read book SOC Functions and Their Applications written by Jein-Shan Chen and published by Springer. This book was released on 2019-02-11 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all of the concepts required to tackle second-order cone programs (SOCPs), in order to provide the reader a complete picture of SOC functions and their applications. SOCPs have attracted considerable attention, due to their wide range of applications in engineering, data science, and finance. To deal with this special group of optimization problems involving second-order cones (SOCs), we most often need to employ the following crucial concepts: (i) spectral decomposition associated with SOCs, (ii) analysis of SOC functions, and (iii) SOC-convexity and -monotonicity. Moreover, we can roughly classify the related algorithms into two categories. One category includes traditional algorithms that do not use complementarity functions. Here, SOC-convexity and SOC-monotonicity play a key role. In contrast, complementarity functions are employed for the other category. In this context, complementarity functions are closely related to SOC functions; consequently, the analysis of SOC functions can help with these algorithms.