On Invariant Probability Measures I

Download On Invariant Probability Measures I PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 12 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis On Invariant Probability Measures I by : J. R. Blum

Download or read book On Invariant Probability Measures I written by J. R. Blum and published by . This book was released on 1961 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Foundations of Ergodic Theory

Download Foundations of Ergodic Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316445429
Total Pages : 547 pages
Book Rating : 4.3/5 (164 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Ergodic Theory by : Marcelo Viana

Download or read book Foundations of Ergodic Theory written by Marcelo Viana and published by Cambridge University Press. This book was released on 2016-02-15 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.

Markov Chains and Invariant Probabilities

Download Markov Chains and Invariant Probabilities PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034880243
Total Pages : 213 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Markov Chains and Invariant Probabilities by : Onésimo Hernández-Lerma

Download or read book Markov Chains and Invariant Probabilities written by Onésimo Hernández-Lerma and published by Birkhäuser. This book was released on 2012-12-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

On Invariant Probability Measures II

Download On Invariant Probability Measures II PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 18 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis On Invariant Probability Measures II by : J. R. Blum

Download or read book On Invariant Probability Measures II written by J. R. Blum and published by . This book was released on 1962 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Random Probability Measures on Polish Spaces

Download Random Probability Measures on Polish Spaces PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1134480377
Total Pages : 186 pages
Book Rating : 4.1/5 (344 download)

DOWNLOAD NOW!


Book Synopsis Random Probability Measures on Polish Spaces by : Hans Crauel

Download or read book Random Probability Measures on Polish Spaces written by Hans Crauel and published by CRC Press. This book was released on 2002-07-25 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the narrow topology on random probability measures on Polish spaces is investigated in a thorough and comprehensive way. As a special feature, no additional assumptions on the probability space in the background, such as completeness or a countable generated algebra, are made. One of the main results is a direct proof of the rando

Dynamical Systems and Ergodic Theory

Download Dynamical Systems and Ergodic Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575997
Total Pages : 198 pages
Book Rating : 4.5/5 (759 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Ergodic Theory by : Mark Pollicott

Download or read book Dynamical Systems and Ergodic Theory written by Mark Pollicott and published by Cambridge University Press. This book was released on 1998-01-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Introduction to Probability and Measure

Download Introduction to Probability and Measure PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9386279274
Total Pages : 352 pages
Book Rating : 4.3/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability and Measure by : K.R. Parthasarathy

Download or read book Introduction to Probability and Measure written by K.R. Parthasarathy and published by Springer. This book was released on 2005-05-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.

Invariant Measures on Groups and Their Use in Statistics

Download Invariant Measures on Groups and Their Use in Statistics PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600195
Total Pages : 264 pages
Book Rating : 4.6/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Invariant Measures on Groups and Their Use in Statistics by : Robert A. Wijsman

Download or read book Invariant Measures on Groups and Their Use in Statistics written by Robert A. Wijsman and published by IMS. This book was released on 1990 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Ergodic Theory

Download Ergodic Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857290215
Total Pages : 486 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Ergodic Theory by : Manfred Einsiedler

Download or read book Ergodic Theory written by Manfred Einsiedler and published by Springer Science & Business Media. This book was released on 2010-09-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Laws of Chaos

Download Laws of Chaos PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461220246
Total Pages : 413 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Laws of Chaos by : Abraham Boyarsky

Download or read book Laws of Chaos written by Abraham Boyarsky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hundred years ago it became known that deterministic systems can exhibit very complex behavior. By proving that ordinary differential equations can exhibit strange behavior, Poincare undermined the founda tions of Newtonian physics and opened a window to the modern theory of nonlinear dynamics and chaos. Although in the 1930s and 1940s strange behavior was observed in many physical systems, the notion that this phenomenon was inherent in deterministic systems was never suggested. Even with the powerful results of S. Smale in the 1960s, complicated be havior of deterministic systems remained no more than a mathematical curiosity. Not until the late 1970s, with the advent of fast and cheap comput ers, was it recognized that chaotic behavior was prevalent in almost all domains of science and technology. Smale horseshoes began appearing in many scientific fields. In 1971, the phrase 'strange attractor' was coined to describe complicated long-term behavior of deterministic systems, and the term quickly became a paradigm of nonlinear dynamics. The tools needed to study chaotic phenomena are entirely different from those used to study periodic or quasi-periodic systems; these tools are analytic and measure-theoretic rather than geometric. For example, in throwing a die, we can study the limiting behavior of the system by viewing the long-term behavior of individual orbits. This would reveal incomprehensibly complex behavior. Or we can shift our perspective: Instead of viewing the long-term outcomes themselves, we can view the probabilities of these outcomes. This is the measure-theoretic approach taken in this book.

Measure, Integral and Probability

Download Measure, Integral and Probability PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1447136314
Total Pages : 229 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Measure, Integral and Probability by : Marek Capinski

Download or read book Measure, Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

An Introduction to Measure Theory

Download An Introduction to Measure Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466406
Total Pages : 206 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Measure Theory by : Terence Tao

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Topics in Applied Analysis and Optimisation

Download Topics in Applied Analysis and Optimisation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030331164
Total Pages : 406 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Topics in Applied Analysis and Optimisation by : Michael Hintermüller

Download or read book Topics in Applied Analysis and Optimisation written by Michael Hintermüller and published by Springer Nature. This book was released on 2019-11-27 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.

Probability on Graphs

Download Probability on Graphs PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108542999
Total Pages : 279 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Probability on Graphs by : Geoffrey Grimmett

Download or read book Probability on Graphs written by Geoffrey Grimmett and published by Cambridge University Press. This book was released on 2018-01-25 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

The Brownian Motion

Download The Brownian Motion PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030201031
Total Pages : 130 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis The Brownian Motion by : Andreas Löffler

Download or read book The Brownian Motion written by Andreas Löffler and published by Springer. This book was released on 2019-07-03 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook is the first to provide Business and Economics Ph.D. students with a precise and intuitive introduction to the formal backgrounds of modern financial theory. It explains Brownian motion, random processes, measures, and Lebesgue integrals intuitively, but without sacrificing the necessary mathematical formalism, making them accessible for readers with little or no previous knowledge of the field. It also includes mathematical definitions and the hidden stories behind the terms discussing why the theories are presented in specific ways.

Probability Measures on Metric Spaces

Download Probability Measures on Metric Spaces PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483225259
Total Pages : 289 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Probability Measures on Metric Spaces by : K. R. Parthasarathy

Download or read book Probability Measures on Metric Spaces written by K. R. Parthasarathy and published by Academic Press. This book was released on 2014-07-03 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.