Natural Language Processing with Python Quick Start Guide

Download Natural Language Processing with Python Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788994108
Total Pages : 177 pages
Book Rating : 4.7/5 (889 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python Quick Start Guide by : Nirant Kasliwal

Download or read book Natural Language Processing with Python Quick Start Guide written by Nirant Kasliwal and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key FeaturesA no-math, code-driven programmer’s guide to text processing and NLPGet state of the art results with modern tooling across linguistics, text vectors and machine learningFundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorchBook Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learnUnderstand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpusWork with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clusteringDeep Learning in NLP using PyTorch with a code-driven introduction to PyTorchUsing an NLP project management Framework for estimating timelines and organizing your project into stagesHack and build a simple chatbot application in 30 minutesDeploy an NLP or machine learning application using Flask as RESTFUL APIsWho this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.

Natural Language Processing with Python Quick Start Guide

Download Natural Language Processing with Python Quick Start Guide PDF Online Free

Author :
Publisher :
ISBN 13 : 9781789130386
Total Pages : 182 pages
Book Rating : 4.1/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python Quick Start Guide by : Nirant Kasliwal

Download or read book Natural Language Processing with Python Quick Start Guide written by Nirant Kasliwal and published by . This book was released on 2018-11-30 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build and deploy intelligent applications for natural language processing with Python by using industry standard tools and recently popular methods in deep learning Key Features A no-math, code-driven programmer's guide to text processing and NLP Get state of the art results with modern tooling across linguistics, text vectors and machine learning Fundamentals of NLP methods from spaCy, gensim, scikit-learn and PyTorch Book Description NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP. The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a workflow for building NLP applications. We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn. We conclude by deploying these models as REST APIs with Flask. By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges. What you will learn Understand classical linguistics in using English grammar for automatically generating questions and answers from a free text corpus Work with text embedding models for dense number representations of words, subwords and characters in the English language for exploring document clustering Deep Learning in NLP using PyTorch with a code-driven introduction to PyTorch Using an NLP project management Framework for estimating timelines and organizing your project into stages Hack and build a simple chatbot application in 30 minutes Deploy an NLP or machine learning application using Flask as RESTFUL APIs Who this book is for Programmers who wish to build systems that can interpret language. Exposure to Python programming is required. Familiarity with NLP or machine learning vocabulary will be helpful, but not mandatory.

Natural Language Processing with Python

Download Natural Language Processing with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 0596555717
Total Pages : 506 pages
Book Rating : 4.5/5 (965 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python by : Steven Bird

Download or read book Natural Language Processing with Python written by Steven Bird and published by "O'Reilly Media, Inc.". This book was released on 2009-06-12 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Getting Started with Natural Language Processing

Download Getting Started with Natural Language Processing PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638350922
Total Pages : 454 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Getting Started with Natural Language Processing by : Ekaterina Kochmar

Download or read book Getting Started with Natural Language Processing written by Ekaterina Kochmar and published by Simon and Schuster. This book was released on 2022-11-15 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hit the ground running with this in-depth introduction to the NLP skills and techniques that allow your computers to speak human. In Getting Started with Natural Language Processing you’ll learn about: Fundamental concepts and algorithms of NLP Useful Python libraries for NLP Building a search algorithm Extracting information from raw text Predicting sentiment of an input text Author profiling Topic labeling Named entity recognition Getting Started with Natural Language Processing is an enjoyable and understandable guide that helps you engineer your first NLP algorithms. Your tutor is Dr. Ekaterina Kochmar, lecturer at the University of Bath, who has helped thousands of students take their first steps with NLP. Full of Python code and hands-on projects, each chapter provides a concrete example with practical techniques that you can put into practice right away. If you’re a beginner to NLP and want to upgrade your applications with functions and features like information extraction, user profiling, and automatic topic labeling, this is the book for you. About the technology From smart speakers to customer service chatbots, apps that understand text and speech are everywhere. Natural language processing, or NLP, is the key to this powerful form of human/computer interaction. And a new generation of tools and techniques make it easier than ever to get started with NLP! About the book Getting Started with Natural Language Processing teaches you how to upgrade user-facing applications with text and speech-based features. From the accessible explanations and hands-on examples in this book you’ll learn how to apply NLP to sentiment analysis, user profiling, and much more. As you go, each new project builds on what you’ve previously learned, introducing new concepts and skills. Handy diagrams and intuitive Python code samples make it easy to get started—even if you have no background in machine learning! What's inside Fundamental concepts and algorithms of NLP Extracting information from raw text Useful Python libraries Topic labeling Building a search algorithm About the reader You’ll need basic Python skills. No experience with NLP required. About the author Ekaterina Kochmar is a lecturer at the Department of Computer Science of the University of Bath, where she is part of the AI research group. Table of Contents 1 Introduction 2 Your first NLP example 3 Introduction to information search 4 Information extraction 5 Author profiling as a machine-learning task 6 Linguistic feature engineering for author profiling 7 Your first sentiment analyzer using sentiment lexicons 8 Sentiment analysis with a data-driven approach 9 Topic analysis 10 Topic modeling 11 Named-entity recognition

Practical Natural Language Processing

Download Practical Natural Language Processing PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 149205402X
Total Pages : 455 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Natural Language Processing by : Sowmya Vajjala

Download or read book Practical Natural Language Processing written by Sowmya Vajjala and published by O'Reilly Media. This book was released on 2020-06-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective

Natural Language Processing with Python and spaCy

Download Natural Language Processing with Python and spaCy PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 171850053X
Total Pages : 217 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing with Python and spaCy by : Yuli Vasiliev

Download or read book Natural Language Processing with Python and spaCy written by Yuli Vasiliev and published by No Starch Press. This book was released on 2020-04-28 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to natural language processing with Python using spaCy, a leading Python natural language processing library. Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: • Work with word vectors to mathematically find words with similar meanings (Chapter 5) • Identify patterns within data using spaCy's built-in displaCy visualizer (Chapter 7) • Automatically extract keywords from user input and store them in a relational database (Chapter 9) • Deploy a chatbot app to interact with users over the internet (Chapter 11) "Try This" sections in each chapter encourage you to practice what you've learned by expanding the book's example scripts to handle a wider range of inputs, add error handling, and build professional-quality applications. By the end of the book, you'll be creating your own NLP applications with Python and spaCy.

Hands-On Natural Language Processing with Python

Download Hands-On Natural Language Processing with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789135915
Total Pages : 307 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Natural Language Processing with Python by : Rajesh Arumugam

Download or read book Hands-On Natural Language Processing with Python written by Rajesh Arumugam and published by Packt Publishing Ltd. This book was released on 2018-07-18 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.

Natural Language Processing in Action

Download Natural Language Processing in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356890
Total Pages : 798 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing in Action by : Hannes Hapke

Download or read book Natural Language Processing in Action written by Hannes Hapke and published by Simon and Schuster. This book was released on 2019-03-16 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Natural Language Processing in Action is your guide to creating machines that understand human language using the power of Python with its ecosystem of packages dedicated to NLP and AI. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recent advances in deep learning empower applications to understand text and speech with extreme accuracy. The result? Chatbots that can imitate real people, meaningful resume-to-job matches, superb predictive search, and automatically generated document summaries—all at a low cost. New techniques, along with accessible tools like Keras and TensorFlow, make professional-quality NLP easier than ever before. About the Book Natural Language Processing in Action is your guide to building machines that can read and interpret human language. In it, you'll use readily available Python packages to capture the meaning in text and react accordingly. The book expands traditional NLP approaches to include neural networks, modern deep learning algorithms, and generative techniques as you tackle real-world problems like extracting dates and names, composing text, and answering free-form questions. What's inside Some sentences in this book were written by NLP! Can you guess which ones? Working with Keras, TensorFlow, gensim, and scikit-learn Rule-based and data-based NLP Scalable pipelines About the Reader This book requires a basic understanding of deep learning and intermediate Python skills. About the Author Hobson Lane, Cole Howard, and Hannes Max Hapke are experienced NLP engineers who use these techniques in production. Table of Contents PART 1 - WORDY MACHINES Packets of thought (NLP overview) Build your vocabulary (word tokenization) Math with words (TF-IDF vectors) Finding meaning in word counts (semantic analysis) PART 2 - DEEPER LEARNING (NEURAL NETWORKS) Baby steps with neural networks (perceptrons and backpropagation) Reasoning with word vectors (Word2vec) Getting words in order with convolutional neural networks (CNNs) Loopy (recurrent) neural networks (RNNs) Improving retention with long short-term memory networks Sequence-to-sequence models and attention PART 3 - GETTING REAL (REAL-WORLD NLP CHALLENGES) Information extraction (named entity extraction and question answering) Getting chatty (dialog engines) Scaling up (optimization, parallelization, and batch processing)

Hands-On Python Natural Language Processing

Download Hands-On Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838982582
Total Pages : 304 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Python Natural Language Processing by : Aman Kedia

Download or read book Hands-On Python Natural Language Processing written by Aman Kedia and published by Packt Publishing Ltd. This book was released on 2020-06-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get well-versed with traditional as well as modern natural language processing concepts and techniques Key FeaturesPerform various NLP tasks to build linguistic applications using Python librariesUnderstand, analyze, and generate text to provide accurate resultsInterpret human language using various NLP concepts, methodologies, and toolsBook Description Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you’ll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you’ll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learnUnderstand how NLP powers modern applicationsExplore key NLP techniques to build your natural language vocabularyTransform text data into mathematical data structures and learn how to improve text mining modelsDiscover how various neural network architectures work with natural language dataGet the hang of building sophisticated text processing models using machine learning and deep learningCheck out state-of-the-art architectures that have revolutionized research in the NLP domainWho this book is for This NLP Python book is for anyone looking to learn NLP’s theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough understanding of the NLP methodologies for building linguistic applications; however, working knowledge of Python programming language and high school level mathematics is expected.

Recurrent Neural Networks with Python Quick Start Guide

Download Recurrent Neural Networks with Python Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789133661
Total Pages : 115 pages
Book Rating : 4.7/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Recurrent Neural Networks with Python Quick Start Guide by : Simeon Kostadinov

Download or read book Recurrent Neural Networks with Python Quick Start Guide written by Simeon Kostadinov and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Text Analytics with Python

Download Text Analytics with Python PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484243544
Total Pages : 688 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Text Analytics with Python by : Dipanjan Sarkar

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2019-05-21 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.

Natural Language Processing and Computational Linguistics

Download Natural Language Processing and Computational Linguistics PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788837037
Total Pages : 298 pages
Book Rating : 4.7/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing and Computational Linguistics by : Bhargav Srinivasa-Desikan

Download or read book Natural Language Processing and Computational Linguistics written by Bhargav Srinivasa-Desikan and published by Packt Publishing Ltd. This book was released on 2018-06-29 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book Description Modern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis. What you will learn Why text analysis is important in our modern age Understand NLP terminology and get to know the Python tools and datasets Learn how to pre-process and clean textual data Convert textual data into vector space representations Using spaCy to process text Train your own NLP models for computational linguistics Use statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learn Employ deep learning techniques for text analysis using Keras Who this book is for This book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!

Python Natural Language Processing Cookbook

Download Python Natural Language Processing Cookbook PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838987789
Total Pages : 285 pages
Book Rating : 4.8/5 (389 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing Cookbook by : Zhenya Antić

Download or read book Python Natural Language Processing Cookbook written by Zhenya Antić and published by Packt Publishing Ltd. This book was released on 2021-03-19 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.

Natural Language Processing

Download Natural Language Processing PDF Online Free

Author :
Publisher :
ISBN 13 : 9781699028452
Total Pages : 140 pages
Book Rating : 4.0/5 (284 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing by : Samuel Burns

Download or read book Natural Language Processing written by Samuel Burns and published by . This book was released on 2019-10-10 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural language processing (NLP) is about developing applications and services that are able to understand human languages. In this perfect Natural Language Processing Tutorial, we will use Python NLTK library. Natural language toolkit (NLTK) is the most popular library for natural language processing (NLP) which was written in Python and has a big community behind it. This is the Ultimate guide to learn Natural Language Processing (NLP) basics, such as how to identify and separate words, how to extract topics in a text. You dont need a big and a boring book to start today . Get Your Copy Now!!Book ObjectivesThe book objectives include the following: To help you appreciate big data as a great source of information and knowledge. To help you understand natural language processing. To help you know how to use natural language processing to extract knowledge and information from big data. To help you learn how to implement natural language processing solutions using NLTK (Natural Language Processing Toolkit) and other libraries in Python. Who this Book is for? Do you belong to any of the following categories? You are a complete beginner to natural language processing. You want to learn Python programming for natural language processing. You want to advance your skills in Python for natural language processing. Professors, lecturers or tutors who are looking to find better ways to explain Natural Language Processing to their students in the simplest and easiest way. Students and academicians, especially those focusing on python programming, Neural Networks, Machine Learning, Deep Learning, and Artificial Intelligence. If yes, this is the right book for you. What do you need for this Book? You only have to have installed Python 3.X on your computer. The author guides you on how to install the rest of the libraries on your computer. What is inside the book? GETTING STARTED WITH NATURAL LANGUAGE PROCESSING TEXT WRANGLING AND CLEANSING. REPLACING AND CORRECTING WORDS. TEXT CLASSIFICATION. SENTIMENT ANALYSIS. PARSING STRUCTURE IN TEXT. SOCIAL MEDIA MINING. NLTK FOR SENTIMENT ANALYSIS. SCIKIT-LEARN FOR TEXT CLASSIFICATION. WORK WITH PDF FILES IN PYTHON. WORK WITH TEXT FILES IN PYTHON. WORD2VEC ALGORITHM. NLP APPLICATIONS From the back cover.This comprehensive guide covers both statistical and symbolic approaches to Natural Language Processing. This is a good introduction to all the major topics of computational linguistics, which includes automatic speech recognition and processing, machine translation, information extraction, and statistical methods of linguistic analysis. Indeed, Natural Language Processing is the scientific discipline concerned with making the natural language accessible to machines, and it is a necessary means to facilitate text analytics by establishing structure in unstructured text to enable further analysis. This guide is a fundamental reference for any computational linguist, speech scientist or language data scientist. The explanations and illustrations in this short book are very intuitive and simple. The author helps you understand what natural language processing is. This is basically a theory touching on the fundamentals of natural language processing. The author then explains to you what the NLTK library is and what it does. The rest of the book is about implementing natural language processing tasks using the NLTK library in Python. Samuel Burns uses a combination of theory, Python code examples, and screenshots showing the expected outputs for various program codes.

Python Natural Language Processing

Download Python Natural Language Processing PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1787285529
Total Pages : 476 pages
Book Rating : 4.7/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Python Natural Language Processing by : Jalaj Thanaki

Download or read book Python Natural Language Processing written by Jalaj Thanaki and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.

FastText Quick Start Guide

Download FastText Quick Start Guide PDF Online Free

Author :
Publisher : Packt Publishing
ISBN 13 : 9781789130997
Total Pages : 194 pages
Book Rating : 4.1/5 (39 download)

DOWNLOAD NOW!


Book Synopsis FastText Quick Start Guide by : Joydeep Bhattacharjee

Download or read book FastText Quick Start Guide written by Joydeep Bhattacharjee and published by Packt Publishing. This book was released on 2018-07-26 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform efficient fast text representation and classification with Facebook's fastText library Key Features Introduction to Facebook's fastText library for NLP Perform efficient word representations, sentence classification, vector representation Build better, more scalable solutions for text representation and classification Book Description Facebook's fastText library handles text representation and classification, used for Natural Language Processing (NLP). Most organizations have to deal with enormous amounts of text data on a daily basis, and gaining efficient data insights requires powerful NLP tools such as fastText. This book is your ideal introduction to fastText. You will learn how to create fastText models from the command line, without the need for complicated code. You will explore the algorithms that fastText is built on and how to use them for word representation and text classification. Next, you will use fastText in conjunction with other popular libraries and frameworks such as Keras, TensorFlow, and PyTorch. Finally, you will deploy fastText models to mobile devices. By the end of this book, you will have all the required knowledge to use fastText in your own applications at work or in projects. What you will learn Create models using the default command line options in fastText Understand the algorithms used in fastText to create word vectors Combine command line text transformation capabilities and the fastText library to implement a training, validation, and prediction pipeline Explore word representation and sentence classification using fastText Use Gensim and spaCy to load the vectors, transform, lemmatize, and perform other NLP tasks efficiently Develop a fastText NLP classifier using popular frameworks, such as Keras, Tensorflow, and PyTorch Who this book is for This book is for data analysts, data scientists, and machine learning developers who want to perform efficient word representation and sentence classification using Facebook's fastText library. Basic knowledge of Python programming is required.

Introduction to Natural Language Processing

Download Introduction to Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262042843
Total Pages : 535 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein

Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.