Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Methods And Models In Statistics
Download Methods And Models In Statistics full books in PDF, epub, and Kindle. Read online Methods And Models In Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs by : David J Hand
Download or read book Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs written by David J Hand and published by World Scientific. This book was released on 2004-07-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: John Nelder was one of the most influential statisticians of his generation, having made an impact on many parts of the discipline. This book contains reviews of some of those areas, written by top researchers. It is accessible to non-specialists, and is noteworthy for its breadth of coverage.
Book Synopsis Statistical Models and Methods for Lifetime Data by : Jerald F. Lawless
Download or read book Statistical Models and Methods for Lifetime Data written by Jerald F. Lawless and published by John Wiley & Sons. This book was released on 2011-01-25 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ." -Choice "This is an important book, which will appeal to statisticians working on survival analysis problems." -Biometrics "A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook." -Statistics in Medicine The statistical analysis of lifetime or response time data is a key tool in engineering, medicine, and many other scientific and technological areas. This book provides a unified treatment of the models and statistical methods used to analyze lifetime data. Equally useful as a reference for individuals interested in the analysis of lifetime data and as a text for advanced students, Statistical Models and Methods for Lifetime Data, Second Edition provides broad coverage of the area without concentrating on any single field of application. Extensive illustrations and examples drawn from engineering and the biomedical sciences provide readers with a clear understanding of key concepts. New and expanded coverage in this edition includes: * Observation schemes for lifetime data * Multiple failure modes * Counting process-martingale tools * Both special lifetime data and general optimization software * Mixture models * Treatment of interval-censored and truncated data * Multivariate lifetimes and event history models * Resampling and simulation methodology
Book Synopsis Statistical Analysis of Network Data by : Eric D. Kolaczyk
Download or read book Statistical Analysis of Network Data written by Eric D. Kolaczyk and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.
Book Synopsis Statistical Models and Methods for Financial Markets by : Tze Leung Lai
Download or read book Statistical Models and Methods for Financial Markets written by Tze Leung Lai and published by Springer Science & Business Media. This book was released on 2008-09-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.
Book Synopsis Data Mining Methods and Models by : Daniel T. Larose
Download or read book Data Mining Methods and Models written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2006-02-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.
Book Synopsis Linear Models in Statistics by : Alvin C. Rencher
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Book Synopsis Complex Models and Computational Methods in Statistics by : Matteo Grigoletto
Download or read book Complex Models and Computational Methods in Statistics written by Matteo Grigoletto and published by Springer Science & Business Media. This book was released on 2013-01-26 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Book Synopsis Regression Methods in Biostatistics by : Eric Vittinghoff
Download or read book Regression Methods in Biostatistics written by Eric Vittinghoff and published by Springer Science & Business Media. This book was released on 2012 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.
Book Synopsis R for Data Science by : Hadley Wickham
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Book Synopsis Statistical Modeling for Management by : Graeme D Hutcheson
Download or read book Statistical Modeling for Management written by Graeme D Hutcheson and published by SAGE. This book was released on 2008-02-12 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing to life the most widely used quantitative measurements and statistical techniques in marketing, this book is packed with user-friendly descriptions, examples and study applications. The process of making marketing decisions is frequently dependent on quantitative analysis and the use of specific statistical tools and techniques which can be tailored and adapted to solve particular marketing problems. Any student hoping to enter the world of marketing will need to show that they understand and have mastered these techniques. A bank of downloadable data sets to compliment the tables provided in the textbook are provided free for you.
Book Synopsis Methods and Models in Statistics by : Niall M. Adams
Download or read book Methods and Models in Statistics written by Niall M. Adams and published by World Scientific. This book was released on 2004 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: John Nelder was one of the most influential statisticians of his generation, having made an impact on many parts of the discipline. This book contains reviews of some of those areas, written by top researchers. It is accessible to non-specialists, and is noteworthy for its breadth of coverage.
Book Synopsis Bayesian Statistics from Methods to Models and Applications by : Sylvia Frühwirth-Schnatter
Download or read book Bayesian Statistics from Methods to Models and Applications written by Sylvia Frühwirth-Schnatter and published by Springer. This book was released on 2015-05-19 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Second Bayesian Young Statisticians Meeting (BAYSM 2014) and the research presented here facilitate connections among researchers using Bayesian Statistics by providing a forum for the development and exchange of ideas. WU Vienna University of Business and Economics hosted BAYSM 2014 from September 18th to the 19th. The guidance of renowned plenary lecturers and senior discussants is a critical part of the meeting and this volume, which follows publication of contributions from BAYSM 2013. The meeting's scientific program reflected the variety of fields in which Bayesian methods are currently employed or could be introduced in the future. Three brilliant keynote lectures by Chris Holmes (University of Oxford), Christian Robert (Université Paris-Dauphine), and Mike West (Duke University), were complemented by 24 plenary talks covering the major topics Dynamic Models, Applications, Bayesian Nonparametrics, Biostatistics, Bayesian Methods in Economics, and Models and Methods, as well as a lively poster session with 30 contributions. Selected contributions have been drawn from the conference for this book. All contributions in this volume are peer-reviewed and share original research in Bayesian computation, application, and theory.
Book Synopsis Modeling Discrete Time-to-Event Data by : Gerhard Tutz
Download or read book Modeling Discrete Time-to-Event Data written by Gerhard Tutz and published by Springer. This book was released on 2016-06-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.
Book Synopsis Statistical Models Based on Counting Processes by : Per K. Andersen
Download or read book Statistical Models Based on Counting Processes written by Per K. Andersen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern survival analysis and more general event history analysis may be effectively handled within the mathematical framework of counting processes. This book presents this theory, which has been the subject of intense research activity over the past 15 years. The exposition of the theory is integrated with careful presentation of many practical examples, drawn almost exclusively from the authors'own experience, with detailed numerical and graphical illustrations. Although Statistical Models Based on Counting Processes may be viewed as a research monograph for mathematical statisticians and biostatisticians, almost all the methods are given in concrete detail for use in practice by other mathematically oriented researchers studying event histories (demographers, econometricians, epidemiologists, actuarial mathematicians, reliability engineers and biologists). Much of the material has so far only been available in the journal literature (if at all), and so a wide variety of researchers will find this an invaluable survey of the subject.
Book Synopsis Frontiers in Massive Data Analysis by : National Research Council
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Download or read book Data Analysis written by Charles M. Judd and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noted for its model-comparison approach and unified framework based on the general linear model (GLM), this classic text provides readers with a greater understanding of a variety of statistical procedures including analysis of variance (ANOVA) and regression.
Book Synopsis Data Analysis Using Regression and Multilevel/Hierarchical Models by : Andrew Gelman
Download or read book Data Analysis Using Regression and Multilevel/Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.