Mastering Generative Adversarial Networks From Basics to Advanced Applications

Download Mastering Generative Adversarial Networks From Basics to Advanced Applications PDF Online Free

Author :
Publisher : SGSH Publications
ISBN 13 : 9366311148
Total Pages : 197 pages
Book Rating : 4.3/5 (663 download)

DOWNLOAD NOW!


Book Synopsis Mastering Generative Adversarial Networks From Basics to Advanced Applications by : Nagaram Ramesh

Download or read book Mastering Generative Adversarial Networks From Basics to Advanced Applications written by Nagaram Ramesh and published by SGSH Publications. This book was released on 2024-08-11 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mastering Generative Adversarial Networks From Basics to Advanced Applications offers a thorough examination of Generative Adversarial Networks (GANs), covering their theoretical foundations, architectural innovations, and practical applications. This book delves into the original GAN model, its evolution, and the mathematical frameworks that support it, while also exploring cutting-edge variants and real-world use cases. Authored by Nagaram Ramesh and V. Bhargavi, it provides a crucial resource for academics, researchers, and practitioners aiming to deepen their understanding and effectively implement GAN technologies.

Mastering AI and Generative AI: From Learning Fundamentals to Advanced Applications

Download Mastering AI and Generative AI: From Learning Fundamentals to Advanced Applications PDF Online Free

Author :
Publisher : Anand Vemula
ISBN 13 :
Total Pages : 72 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Mastering AI and Generative AI: From Learning Fundamentals to Advanced Applications by : Anand Vemula

Download or read book Mastering AI and Generative AI: From Learning Fundamentals to Advanced Applications written by Anand Vemula and published by Anand Vemula. This book was released on with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide dives into the fascinating world of Artificial Intelligence (AI) and its cutting-edge subfield, Generative AI. Designed for beginners and enthusiasts alike, it equips you with the knowledge and skills to navigate the complexities of machine learning and unlock the power of AI for advanced applications. Building a Strong Foundation The journey begins with mastering the fundamentals. You'll explore the different approaches to AI, delve into the history of this revolutionary field, and gain a solid understanding of various subfields like Machine Learning, Deep Learning, Natural Language Processing, and Computer Vision. Delving into Machine Learning Machine learning, the core of AI's learning ability, takes center stage. You'll grasp the difference between supervised and unsupervised learning paradigms, discover popular algorithms like decision trees and neural networks, and learn the importance of data preparation for optimal model performance. Evaluation metrics become your tools to measure how effectively your models are learning. Unveiling the Power of Deep Learning Get ready to explore the intricate world of Deep Learning, a powerful subset of machine learning inspired by the human brain. Demystify neural networks, the building blocks of deep learning, and dive into specialized architectures like Convolutional Neural Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for handling sequential data. Deep learning frameworks become your allies, simplifying the process of building and deploying complex deep learning models. The Art of Machine Creation: Generative AI The book then shifts its focus to the transformative realm of Generative AI. Here, machines not only learn but create entirely new data. Explore different types of generative models, from autoregressive models to variational autoencoders, and witness their applications in text generation, image synthesis, and even music creation. A Deep Dive into Generative Adversarial Networks (GANs) Among generative models, Generative Adversarial Networks (GANs) have captured the imagination of researchers and the public alike. This chapter delves into the intriguing concept of GANs, where a generator model continuously strives to create realistic data while a discriminator model acts as a critic, ensuring the generated data is indistinguishable from real data. You'll explore the training process, the challenges of taming GANs, and best practices for achieving optimal results. Advanced Applications Across Domains The book then showcases the transformative potential of Generative AI across various domains. Witness the power of text generation with RNNs, explore the ethical considerations surrounding deepfakes, and discover how chatbots are revolutionizing communication. In the visual realm, delve into Deep Dream and Neural Style Transfer algorithms, and witness the creation of realistic images and videos with cutting-edge generative models. Mastering AI and Generative AI empowers you to not only understand these revolutionary technologies but also leverage them for advanced applications. As you embark on this journey, be prepared to unlock the boundless potential of machine creation and shape the future of AI.

Generative Deep Learning

Download Generative Deep Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492041890
Total Pages : 301 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Generative Deep Learning by : David Foster

Download or read book Generative Deep Learning written by David Foster and published by "O'Reilly Media, Inc.". This book was released on 2019-06-28 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN

200 Tips for Mastering Generative AI

Download 200 Tips for Mastering Generative AI PDF Online Free

Author :
Publisher : Rick Spair
ISBN 13 :
Total Pages : 888 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis 200 Tips for Mastering Generative AI by : Rick Spair

Download or read book 200 Tips for Mastering Generative AI written by Rick Spair and published by Rick Spair. This book was released on with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the rapidly evolving landscape of artificial intelligence, Generative AI stands out as a transformative force with the potential to revolutionize industries and reshape our understanding of creativity and automation. From its inception, Generative AI has captured the imagination of researchers, developers, and entrepreneurs, offering unprecedented capabilities in generating new data, simulating complex systems, and solving intricate problems that were once considered beyond the reach of machines. This book, "200 Tips for Mastering Generative AI," is a comprehensive guide designed to empower you with the knowledge and practical insights needed to harness the full potential of Generative AI. Whether you are a seasoned AI practitioner, a curious researcher, a forward-thinking entrepreneur, or a passionate enthusiast, this book provides valuable tips and strategies to navigate the vast and intricate world of Generative AI. We invite you to explore, experiment, and innovate with the knowledge you gain from this book. Together, we can unlock the full potential of Generative AI and shape a future where intelligent machines and human creativity coexist and collaborate in unprecedented ways. Welcome to "200 Tips for Mastering Generative AI." Your journey into the fascinating world of Generative AI begins here.

GANs in Action

Download GANs in Action PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638354235
Total Pages : 367 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis GANs in Action by : Vladimir Bok

Download or read book GANs in Action written by Vladimir Bok and published by Simon and Schuster. This book was released on 2019-09-09 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural sentences and paragraphs, or native-quality translations have proven elusive. Generative Adversarial Networks, or GANs, offer a promising solution to these challenges by pairing two competing neural networks' one that generates content and the other that rejects samples that are of poor quality. GANs in Action: Deep learning with Generative Adversarial Networks teaches you how to build and train your own generative adversarial networks. First, you'll get an introduction to generative modelling and how GANs work, along with an overview of their potential uses. Then, you'll start building your own simple adversarial system, as you explore the foundation of GAN architecture: the generator and discriminator networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Generative Adversarial Networks for Image-to-Image Translation

Download Generative Adversarial Networks for Image-to-Image Translation PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128236132
Total Pages : 446 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Generative Adversarial Networks for Image-to-Image Translation by : Arun Solanki

Download or read book Generative Adversarial Networks for Image-to-Image Translation written by Arun Solanki and published by Academic Press. This book was released on 2021-06-22 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications

Generative Adversarial Networks with Python

Download Generative Adversarial Networks with Python PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 655 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Generative Adversarial Networks with Python by : Jason Brownlee

Download or read book Generative Adversarial Networks with Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-07-11 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.

Machine Learning Mastery: Algorithms and Applications

Download Machine Learning Mastery: Algorithms and Applications PDF Online Free

Author :
Publisher : Richards Education
ISBN 13 :
Total Pages : 156 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Mastery: Algorithms and Applications by : Michael Roberts

Download or read book Machine Learning Mastery: Algorithms and Applications written by Michael Roberts and published by Richards Education. This book was released on with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the power of machine learning with Machine Learning Mastery: Algorithms and Applications. This comprehensive guide covers everything from fundamental concepts to advanced techniques, providing a deep dive into the algorithms that power modern AI and their practical applications across various industries. Whether you're a beginner looking to get started or an experienced practitioner seeking to deepen your knowledge, this book offers a structured and detailed exploration of data preprocessing, supervised and unsupervised learning, reinforcement learning, and deep learning. Learn how to evaluate and optimize models, deploy machine learning solutions, and navigate the ethical and practical challenges of implementing AI in the real world. With case studies and hands-on examples, Machine Learning Mastery is your essential companion on the journey to becoming a proficient machine learning expert.

Mastering Large Language Models

Download Mastering Large Language Models PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9355519656
Total Pages : 465 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Mastering Large Language Models by : Sanket Subhash Khandare

Download or read book Mastering Large Language Models written by Sanket Subhash Khandare and published by BPB Publications. This book was released on 2024-03-12 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do not just talk AI, build it: Your guide to LLM application development KEY FEATURES ● Explore NLP basics and LLM fundamentals, including essentials, challenges, and model types. ● Learn data handling and pre-processing techniques for efficient data management. ● Understand neural networks overview, including NN basics, RNNs, CNNs, and transformers. ● Strategies and examples for harnessing LLMs. DESCRIPTION Transform your business landscape with the formidable prowess of large language models (LLMs). The book provides you with practical insights, guiding you through conceiving, designing, and implementing impactful LLM-driven applications. This book explores NLP fundamentals like applications, evolution, components and language models. It teaches data pre-processing, neural networks , and specific architectures like RNNs, CNNs, and transformers. It tackles training challenges, advanced techniques such as GANs, meta-learning, and introduces top LLM models like GPT-3 and BERT. It also covers prompt engineering. Finally, it showcases LLM applications and emphasizes responsible development and deployment. With this book as your compass, you will navigate the ever-evolving landscape of LLM technology, staying ahead of the curve with the latest advancements and industry best practices. WHAT YOU WILL LEARN ● Grasp fundamentals of natural language processing (NLP) applications. ● Explore advanced architectures like transformers and their applications. ● Master techniques for training large language models effectively. ● Implement advanced strategies, such as meta-learning and self-supervised learning. ● Learn practical steps to build custom language model applications. WHO THIS BOOK IS FOR This book is tailored for those aiming to master large language models, including seasoned researchers, data scientists, developers, and practitioners in natural language processing (NLP). TABLE OF CONTENTS 1. Fundamentals of Natural Language Processing 2. Introduction to Language Models 3. Data Collection and Pre-processing for Language Modeling 4. Neural Networks in Language Modeling 5. Neural Network Architectures for Language Modeling 6. Transformer-based Models for Language Modeling 7. Training Large Language Models 8. Advanced Techniques for Language Modeling 9. Top Large Language Models 10. Building First LLM App 11. Applications of LLMs 12. Ethical Considerations 13. Prompt Engineering 14. Future of LLMs and Its Impact

Mastering Neural Networks

Download Mastering Neural Networks PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 221 pages
Book Rating : 4.8/5 (76 download)

DOWNLOAD NOW!


Book Synopsis Mastering Neural Networks by : Cybellium Ltd

Download or read book Mastering Neural Networks written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the Power of Deep Learning for Intelligent Systems In the realm of artificial intelligence and machine learning, neural networks stand as the driving force behind intelligent systems that mimic human cognition. "Mastering Neural Networks" is your ultimate guide to comprehending and harnessing the potential of these powerful algorithms, empowering you to create intelligent solutions that push the boundaries of innovation. About the Book: As technology advances, the capabilities of neural networks become more integral to various fields. "Mastering Neural Networks" offers an in-depth exploration of this cutting-edge subject—an essential toolkit for data scientists, engineers, and enthusiasts. This book caters to both newcomers and experienced learners aiming to excel in neural network concepts, architectures, and applications. Key Features: Neural Network Fundamentals: Begin by understanding the core principles of neural networks. Learn about artificial neurons, activation functions, and the architecture of these powerful algorithms. Feedforward Neural Networks: Dive into feedforward neural networks. Explore techniques for designing, training, and optimizing networks for various tasks. Convolutional Neural Networks: Grasp the art of convolutional neural networks. Understand how these architectures excel in image and pattern recognition tasks. Recurrent Neural Networks: Explore recurrent neural networks. Learn how to process sequences and time-series data, making them suitable for tasks like language modeling and speech recognition. Generative Adversarial Networks: Understand the significance of generative adversarial networks. Explore how these networks enable the generation of realistic images, text, and data. Transfer Learning and Fine-Tuning: Delve into transfer learning. Learn how to leverage pretrained models and adapt them to new tasks, saving time and resources. Neural Network Optimization: Grasp optimization techniques. Explore methods for improving network performance, reducing overfitting, and tuning hyperparameters. Real-World Applications: Gain insights into how neural networks are applied across industries. From healthcare to finance, discover the diverse applications of these algorithms. Why This Book Matters: In a world driven by intelligent systems, mastering neural networks offers a competitive advantage. "Mastering Neural Networks" empowers data scientists, engineers, and technology enthusiasts to leverage these cutting-edge algorithms, enabling them to create intelligent solutions that redefine the boundaries of innovation. Unleash the Future of Intelligence: In the landscape of artificial intelligence, neural networks are reshaping technology and innovation. "Mastering Neural Networks" equips you with the knowledge needed to leverage these powerful algorithms, enabling you to create intelligent solutions that push the boundaries of innovation and redefine what's possible. Whether you're a seasoned practitioner or new to the world of neural networks, this book will guide you in building a solid foundation for effective AI-driven solutions. Your journey to mastering neural networks starts here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788625900
Total Pages : 567 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment

Download Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment PDF Online Free

Author :
Publisher : Walzone Press
ISBN 13 :
Total Pages : 202 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment by : Peter Jones

Download or read book Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment written by Peter Jones and published by Walzone Press. This book was released on 2024-10-11 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.

Neural Network Programming

Download Neural Network Programming PDF Online Free

Author :
Publisher : Rob Botwright
ISBN 13 : 1839386436
Total Pages : 277 pages
Book Rating : 4.8/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Programming by : Rob Botwright

Download or read book Neural Network Programming written by Rob Botwright and published by Rob Botwright. This book was released on 101-01-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the Power of AI with Our Neural Network Programming Book Bundle Are you ready to embark on a journey into the exciting world of artificial intelligence? Do you dream of mastering the skills needed to create cutting-edge AI systems that can revolutionize industries and change the future? Look no further than our comprehensive book bundle, "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Why Choose Our Book Bundle? In this era of technological advancement, artificial intelligence is at the forefront of innovation. Neural networks, a subset of AI, are driving breakthroughs in fields as diverse as healthcare, finance, and autonomous vehicles. To harness the full potential of AI, you need knowledge and expertise. That's where our book bundle comes in. What You'll Gain · Book 1 - Neural Network Programming for Beginners: If you're new to AI, this book is your perfect starting point. Learn Python, TensorFlow, and Keras from scratch and build your first AI systems. Lay the foundation for a rewarding journey into AI development. · Book 2 - Advanced Neural Network Programming: Ready to take your skills to the next level? Dive deep into advanced techniques, fine-tune models, and explore real-world applications. Master the intricacies of TensorFlow and Keras to tackle complex AI challenges. · Book 3 - Neural Network Programming: Beyond the Basics: Discover the world beyond fundamentals. Explore advanced concepts and cutting-edge architectures like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). Be prepared to innovate in AI research and development. · Book 4 - Expert Neural Network Programming: Elevate yourself to expert status. Dive into quantum neural networks, ethical AI, model deployment, and the future of AI research. Push the boundaries of AI development with advanced Python, TensorFlow, and Keras techniques. Who Is This Bundle For? · Aspiring AI Enthusiasts: If you're new to AI but eager to learn, our bundle offers a gentle and structured introduction. · Seasoned Developers: Professionals seeking to master AI development will find advanced techniques and real-world applications. · Researchers: Dive into cutting-edge AI research and contribute to the forefront of innovation. Why Us? Our book bundle is meticulously crafted by experts with a passion for AI. We offer a clear, step-by-step approach, ensuring that learners of all backgrounds can benefit. With hands-on projects, real-world applications, and a focus on both theory and practice, our bundle equips you with the skills and knowledge needed to succeed in the ever-evolving world of AI. Don't miss this opportunity to unlock the power of AI. Invest in your future today with "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Start your journey into the exciting world of artificial intelligence now!

Mastering PyTorch

Download Mastering PyTorch PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789616409
Total Pages : 450 pages
Book Rating : 4.7/5 (896 download)

DOWNLOAD NOW!


Book Synopsis Mastering PyTorch by : Ashish Ranjan Jha

Download or read book Mastering PyTorch written by Ashish Ranjan Jha and published by Packt Publishing Ltd. This book was released on 2021-02-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is for This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.

Advanced Deep Learning with Python

Download Advanced Deep Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1789952719
Total Pages : 456 pages
Book Rating : 4.7/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning with Python by : Ivan Vasilev

Download or read book Advanced Deep Learning with Python written by Ivan Vasilev and published by Packt Publishing Ltd. This book was released on 2019-12-12 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key FeaturesGet to grips with building faster and more robust deep learning architecturesInvestigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorchApply deep neural networks (DNNs) to computer vision problems, NLP, and GANsBook Description In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learnCover advanced and state-of-the-art neural network architecturesUnderstand the theory and math behind neural networksTrain DNNs and apply them to modern deep learning problemsUse CNNs for object detection and image segmentationImplement generative adversarial networks (GANs) and variational autoencoders to generate new imagesSolve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence modelsUnderstand DL techniques, such as meta-learning and graph neural networksWho this book is for This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.

Mastering Machine Learning

Download Mastering Machine Learning PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 335 pages
Book Rating : 4.8/5 (549 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning by : Cybellium Ltd

Download or read book Mastering Machine Learning written by Cybellium Ltd and published by Cybellium Ltd. This book was released on 2023-09-05 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you ready to become a master of machine learning? In "Mastering Machine Learning" by Kris Hermans, you'll embark on a transformative journey that will empower you with the skills and knowledge needed to conquer the world of data-driven intelligence. Discover Cutting-Edge Techniques and Practical Applications From self-driving cars to personalized recommendations, machine learning is transforming industries and reshaping the way we live and work. In this comprehensive guide, Kris Hermans equips you with the tools to harness the power of machine learning. Dive into the core concepts, algorithms, and models that underpin this revolutionary field. Become a Proficient Practitioner Whether you're a beginner or an experienced professional, this book provides a clear and structured path to mastering machine learning. Through hands-on examples and real-world case studies, you'll gain practical expertise in implementing machine learning models and solving complex problems. Kris Hermans guides you through the process, ensuring you develop a deep understanding of the techniques and algorithms that drive intelligent systems. From Fundamentals to Advanced Topics "Mastering Machine Learning" covers the full spectrum of machine learning, starting with the foundations of supervised and unsupervised learning and progressing to reinforcement learning, neural networks, and deep learning. Explore diverse models and learn how to choose the right approach for different applications. With this knowledge, you'll be able to tackle real-world challenges with confidence. Unlock the Potential of Machine Learning Across Industries Discover how machine learning is revolutionizing industries such as finance, healthcare, e-commerce, and cybersecurity. Through captivating case studies, you'll witness the transformative impact of machine learning and gain insights into how organizations are leveraging this technology to drive innovation, improve decision-making, and achieve unprecedented success. Navigate Ethical Considerations As machine learning becomes increasingly powerful, it's crucial to consider the ethical implications. "Mastering Machine Learning" addresses these important considerations head-on. Learn about the ethical challenges and responsibilities associated with machine learning applications and gain the knowledge to make informed, ethical decisions in your own work.

Mastering AI model training

Download Mastering AI model training PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 272 pages
Book Rating : 4.8/5 (549 download)

DOWNLOAD NOW!


Book Synopsis Mastering AI model training by : Cybellium Ltd

Download or read book Mastering AI model training written by Cybellium Ltd and published by Cybellium Ltd. This book was released on 2023-09-05 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you ready to take your AI training skills to the next level? In "Mastering AI Model Training" by Kris Hermans, you'll embark on a transformative journey that will empower you to train highly accurate and efficient artificial intelligence models. Uncover Advanced Techniques and Best Practices As AI continues to revolutionize industries, the ability to train powerful and optimized models is paramount. In this comprehensive guide, Kris Hermans reveals the secrets to mastering AI model training. Explore advanced techniques, cutting-edge algorithms, and industry best practices that will propel your AI training expertise to new heights. Become an Expert in Training AI Models Whether you're a seasoned data scientist or a passionate AI enthusiast, this book provides a structured approach to mastering AI model training. Kris Hermans demystifies complex concepts and presents them in a clear and practical manner. Through real-world examples and hands-on exercises, you'll develop the skills and intuition necessary to train AI models that achieve exceptional performance. From Fundamentals to Advanced Topics "Mastering AI Model Training" covers the full spectrum of AI training, starting from the basics of data preprocessing and feature engineering and progressing to advanced topics such as transfer learning, hyperparameter optimization, and model compression. Gain a deep understanding of different training algorithms and architectures, and learn how to adapt them to various domains and use cases. Optimize Training for Performance and Efficiency Discover strategies for improving model performance, reducing training time, and optimizing resource utilization. Explore techniques for handling large datasets, distributed training, and leveraging hardware accelerators such as GPUs and TPUs. With Kris Hermans as your guide, you'll learn how to train models that deliver superior results while maximizing computational efficiency. Practical Applications and Real-World Case Studies Immerse yourself in practical applications of AI model training across industries such as healthcare, finance, manufacturing, and more. Dive into captivating case studies that demonstrate how AI training is transforming businesses and driving innovation. Gain insights into the challenges faced by organizations and learn how they leverage AI training techniques to gain a competitive edge. Ethical Considerations and Responsible AI With great power comes great responsibility. "Mastering AI Model Training" addresses the ethical considerations associated with AI training and highlights the importance of responsible AI practices. Learn how to mitigate biases, ensure fairness, and navigate ethical challenges to build AI models that are not only accurate and efficient but also ethical and trustworthy.