Biological Sequence Analysis

Download Biological Sequence Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113945739X
Total Pages : 372 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Biological Sequence Analysis by : Richard Durbin

Download or read book Biological Sequence Analysis written by Richard Durbin and published by Cambridge University Press. This book was released on 1998-04-23 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Machine learning for biological sequence analysis

Download Machine learning for biological sequence analysis PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832516017
Total Pages : 150 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Machine learning for biological sequence analysis by : Quan Zou

Download or read book Machine learning for biological sequence analysis written by Quan Zou and published by Frontiers Media SA. This book was released on 2023-03-09 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Supervised Sequence Labelling with Recurrent Neural Networks

Download Supervised Sequence Labelling with Recurrent Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642247970
Total Pages : 148 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Supervised Sequence Labelling with Recurrent Neural Networks by : Alex Graves

Download or read book Supervised Sequence Labelling with Recurrent Neural Networks written by Alex Graves and published by Springer. This book was released on 2012-02-06 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Analysis of Biological Data

Download Analysis of Biological Data PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812708898
Total Pages : 353 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Biological Data by : Sanghamitra Bandyopadhyay

Download or read book Analysis of Biological Data written by Sanghamitra Bandyopadhyay and published by World Scientific. This book was released on 2007 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics, a field devoted to the interpretation and analysis of biological data using computational techniques, has evolved tremendously in recent years due to the explosive growth of biological information generated by the scientific community. Soft computing is a consortium of methodologies that work synergistically and provides, in one form or another, flexible information processing capabilities for handling real-life ambiguous situations. Several research articles dealing with the application of soft computing tools to bioinformatics have been published in the recent past; however, they are scattered in different journals, conference proceedings and technical reports, thus causing inconvenience to readers, students and researchers. This book, unique in its nature, is aimed at providing a treatise in a unified framework, with both theoretical and experimental results, describing the basic principles of soft computing and demonstrating the various ways in which they can be used for analyzing biological data in an efficient manner. Interesting research articles from eminent scientists around the world are brought together in a systematic way such that the reader will be able to understand the issues and challenges in this domain, the existing ways of tackling them, recent trends, and future directions. This book is the first of its kind to bring together two important research areas, soft computing and bioinformatics, in order to demonstrate how the tools and techniques in the former can be used for efficiently solving several problems in the latter. Sample Chapter(s). Chapter 1: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (160 KB). Contents: Overview: Bioinformatics: Mining the Massive Data from High Throughput Genomics Experiments (H Tang & S Kim); An Introduction to Soft Computing (A Konar & S Das); Biological Sequence and Structure Analysis: Reconstructing Phylogenies with Memetic Algorithms and Branch-and-Bound (J E Gallardo et al.); Classification of RNA Sequences with Support Vector Machines (J T L Wang & X Wu); Beyond String Algorithms: Protein Sequence Analysis Using Wavelet Transforms (A Krishnan & K-B Li); Filtering Protein Surface Motifs Using Negative Instances of Active Sites Candidates (N L Shrestha & T Ohkawa); Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction (G Pollastri et al.); In Silico Design of Ligands Using Properties of Target Active Sites (S Bandyopadhyay et al.); Gene Expression and Microarray Data Analysis: Inferring Regulations in a Genomic Network from Gene Expression Profiles (N Noman & H Iba); A Reliable Classification of Gene Clusters for Cancer Samples Using a Hybrid Multi-Objective Evolutionary Procedure (K Deb et al.); Feature Selection for Cancer Classification Using Ant Colony Optimization and Support Vector Machines (A Gupta et al.); Sophisticated Methods for Cancer Classification Using Microarray Data (S-B Cho & H-S Park); Multiobjective Evolutionary Approach to Fuzzy Clustering of Microarray Data (A Mukhopadhyay et al.). Readership: Graduate students and researchers in computer science, bioinformatics, computational and molecular biology, artificial intelligence, data mining, machine learning, electrical engineering, system science; researchers in pharmaceutical industries.

Statistical Modeling and Machine Learning for Molecular Biology

Download Statistical Modeling and Machine Learning for Molecular Biology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482258609
Total Pages : 281 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modeling and Machine Learning for Molecular Biology by : Alan Moses

Download or read book Statistical Modeling and Machine Learning for Molecular Biology written by Alan Moses and published by CRC Press. This book was released on 2017-01-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics

Bioinformatics

Download Bioinformatics PDF Online Free

Author :
Publisher : MIT Press (MA)
ISBN 13 : 9780262024426
Total Pages : 351 pages
Book Rating : 4.0/5 (244 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics by : Pierre Baldi

Download or read book Bioinformatics written by Pierre Baldi and published by MIT Press (MA). This book was released on 1998 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding more than ever. Biotechnology, pharmacology, and medicine will be particularly affected by the new results and the increased understanding of life at the molecular level. Bioinformatics is the development and application of computer methods for analysis, interpretation, and prediction, as well as for the design of experiments. It has emerged as a strategic frontier between biology and computer science. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory—and this is exactly the situation in molecular biology. As with its predecessor, statistical model fitting, the goal in machine learning is to extract useful information from a body of data by building good probabilistic models. The particular twist behind machine learning, however, is to automate the process as much as possible. In this book, Pierre Baldi and Soren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed at two types of researchers and students. First are the biologists and biochemists who need to understand new data-driven algorithms, such as neural networks and hidden Markov models, in the context of biological sequences and their molecular structure and function. Second are those with a primary background in physics, mathematics, statistics, or computer science who need to know more about specific applications in molecular biology.

Nucleic Acid and Protein Sequence Analysis

Download Nucleic Acid and Protein Sequence Analysis PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 :
Total Pages : 446 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Nucleic Acid and Protein Sequence Analysis by : Martin J. Bishop

Download or read book Nucleic Acid and Protein Sequence Analysis written by Martin J. Bishop and published by Oxford University Press, USA. This book was released on 1987 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Machine Learning in Bioinformatics

Download Machine Learning in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470397411
Total Pages : 476 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Bioinformatics by : Yanqing Zhang

Download or read book Machine Learning in Bioinformatics written by Yanqing Zhang and published by John Wiley & Sons. This book was released on 2009-02-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.

Sequence Analysis in Molecular Biology

Download Sequence Analysis in Molecular Biology PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Sequence Analysis in Molecular Biology by : Gunnar von Heijne

Download or read book Sequence Analysis in Molecular Biology written by Gunnar von Heijne and published by . This book was released on 1987 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequence Analysis in Molecular Biology ...

The Grammar of Life

Download The Grammar of Life PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 264 pages
Book Rating : 4.:/5 (334 download)

DOWNLOAD NOW!


Book Synopsis The Grammar of Life by : Guy Theodore Wrench

Download or read book The Grammar of Life written by Guy Theodore Wrench and published by . This book was released on 1908 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Genomics with R

Download Computational Genomics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498781861
Total Pages : 463 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Genomics with R by : Altuna Akalin

Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Python Programming for Biology

Download Python Programming for Biology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316194140
Total Pages : 721 pages
Book Rating : 4.3/5 (161 download)

DOWNLOAD NOW!


Book Synopsis Python Programming for Biology by : Tim J. Stevens

Download or read book Python Programming for Biology written by Tim J. Stevens and published by Cambridge University Press. This book was released on 2015-02-12 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do you have a biological question that could be readily answered by computational techniques, but little experience in programming? Do you want to learn more about the core techniques used in computational biology and bioinformatics? Written in an accessible style, this guide provides a foundation for both newcomers to computer programming and those interested in learning more about computational biology. The chapters guide the reader through: a complete beginners' course to programming in Python, with an introduction to computing jargon; descriptions of core bioinformatics methods with working Python examples; scientific computing techniques, including image analysis, statistics and machine learning. This book also functions as a language reference written in straightforward English, covering the most common Python language elements and a glossary of computing and biological terms. This title will teach undergraduates, postgraduates and professionals working in the life sciences how to program with Python, a powerful, flexible and easy-to-use language.

Algorithms on Strings, Trees, and Sequences

Download Algorithms on Strings, Trees, and Sequences PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139811002
Total Pages : 556 pages
Book Rating : 4.1/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Algorithms on Strings, Trees, and Sequences by : Dan Gusfield

Download or read book Algorithms on Strings, Trees, and Sequences written by Dan Gusfield and published by Cambridge University Press. This book was released on 1997-05-28 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals.

Artificial Intelligence in Bioinformatics

Download Artificial Intelligence in Bioinformatics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128229292
Total Pages : 270 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Bioinformatics by : Mario Cannataro

Download or read book Artificial Intelligence in Bioinformatics written by Mario Cannataro and published by Elsevier. This book was released on 2022-05-12 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining reviews the main applications of the topic, from omics analysis to deep learning and network mining. The book includes a rigorous introduction on bioinformatics, also reviewing how methods are incorporated in tasks and processes. In addition, it presents methods and theory, including content for emergent fields such as Sentiment Analysis and Network Alignment. Other sections survey how Artificial Intelligence is exploited in bioinformatics applications, including sequence analysis, structure analysis, functional analysis, protein classification, omics analysis, biomarker discovery, integrative bioinformatics, protein interaction analysis, metabolic networks analysis, and much more. - Bridges the gap between computer science and bioinformatics, combining an introduction to Artificial Intelligence methods with a systematic review of its applications in the life sciences - Brings readers up-to-speed on current trends and methods in a dynamic and growing field - Provides academic teachers with a complete resource, covering fundamental concepts as well as applications

An Introduction to Bioinformatics Algorithms

Download An Introduction to Bioinformatics Algorithms PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262101066
Total Pages : 460 pages
Book Rating : 4.1/5 (1 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Bioinformatics Algorithms by : Neil C. Jones

Download or read book An Introduction to Bioinformatics Algorithms written by Neil C. Jones and published by MIT Press. This book was released on 2004-08-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text that emphasizes the underlying algorithmic ideas that are driving advances in bioinformatics. This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems. The book introduces biological and algorithmic ideas together, linking issues in computer science to biology and thus capturing the interest of students in both subjects. It demonstrates that relatively few design techniques can be used to solve a large number of practical problems in biology, and presents this material intuitively. An Introduction to Bioinformatics Algorithms is one of the first books on bioinformatics that can be used by students at an undergraduate level. It includes a dual table of contents, organized by algorithmic idea and biological idea; discussions of biologically relevant problems, including a detailed problem formulation and one or more solutions for each; and brief biographical sketches of leading figures in the field. These interesting vignettes offer students a glimpse of the inspirations and motivations for real work in bioinformatics, making the concepts presented in the text more concrete and the techniques more approachable.PowerPoint presentations, practical bioinformatics problems, sample code, diagrams, demonstrations, and other materials can be found at the Author's website.

Intelligent Computing Theories and Application

Download Intelligent Computing Theories and Application PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030608026
Total Pages : 638 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Computing Theories and Application by : De-Shuang Huang

Download or read book Intelligent Computing Theories and Application written by De-Shuang Huang and published by Springer Nature. This book was released on 2020-10-13 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set of LNCS 12463 and LNCS 12464 constitutes - in conjunction with the volume LNAI 12465 - the refereed proceedings of the 16th International Conference on Intelligent Computing, ICIC 2020, held in Bari, Italy, in October 2020. The 162 full papers of the three proceedings volumes were carefully reviewed and selected from 457 submissions. The ICIC theme unifies the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. The theme for this conference is “Advanced Intelligent Computing Methodologies and Applications.” Papers related to this theme are especially solicited, addressing theories, methodologies, and applications in science and technology.

Bioinformatics: Sequences, Structures, Phylogeny

Download Bioinformatics: Sequences, Structures, Phylogeny PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811315620
Total Pages : 402 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics: Sequences, Structures, Phylogeny by : Asheesh Shanker

Download or read book Bioinformatics: Sequences, Structures, Phylogeny written by Asheesh Shanker and published by Springer. This book was released on 2018-10-13 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the concepts and approaches used for sequence, structure, and phylogenetic analysis. Starting with an introduction to the subject and intellectual property protection for bioinformatics, it guides readers through the latest sequencing technologies, sequence analysis, genomic variations, metagenomics, epigenomics, molecular evolution and phylogenetics, structural bioinformatics, protein folding, structure analysis and validation, drug discovery, reverse vaccinology, machine learning, application of R programming in biological data analysis, and the use of Linux in handling large data files.