Machine Learning and Metaheuristics: Methods and Analysis

Download Machine Learning and Metaheuristics: Methods and Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819966450
Total Pages : 304 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Metaheuristics: Methods and Analysis by : Uma N. Dulhare

Download or read book Machine Learning and Metaheuristics: Methods and Analysis written by Uma N. Dulhare and published by Springer Nature. This book was released on 2023-12-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a balanced approach between theoretical understanding and real-time applications. All the topics included real-world problems which show how to explore, build, evaluate, and optimize machine learning models fusion with metaheuristic algorithms. Optimization algorithms classified into two broad categories as deterministic and probabilistic algorithms. The content of book elaborates optimization algorithms such as particle swarm optimization, ant colony optimization, whale search algorithm, and cuckoo search algorithm.

Metaheuristics in Machine Learning: Theory and Applications

Download Metaheuristics in Machine Learning: Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030705420
Total Pages : 765 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Metaheuristics in Machine Learning: Theory and Applications by : Diego Oliva

Download or read book Metaheuristics in Machine Learning: Theory and Applications written by Diego Oliva and published by Springer Nature. This book was released on with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.

Informatics and Machine Learning

Download Informatics and Machine Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119716748
Total Pages : 596 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Informatics and Machine Learning by : Stephen Winters-Hilt

Download or read book Informatics and Machine Learning written by Stephen Winters-Hilt and published by John Wiley & Sons. This book was released on 2022-01-06 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informatics and Machine Learning Discover a thorough exploration of how to use computational, algorithmic, statistical, and informatics methods to analyze digital data Informatics and Machine Learning: From Martingales to Metaheuristics delivers an interdisciplinary presentation on how analyze any data captured in digital form. The book describes how readers can conduct analyses of text, general sequential data, experimental observations over time, stock market and econometric histories, or symbolic data, like genomes. It contains large amounts of sample code to demonstrate the concepts contained within and assist with various levels of project work. The book offers a complete presentation of the mathematical underpinnings of a wide variety of forms of data analysis and provides extensive examples of programming implementations. It is based on two decades worth of the distinguished author’s teaching and industry experience. A thorough introduction to probabilistic reasoning and bioinformatics, including Python shell scripting to obtain data counts, frequencies, probabilities, and anomalous statistics, or use with Bayes’ rule An exploration of information entropy and statistical measures, including Shannon entropy, relative entropy, maximum entropy (maxent), and mutual information A practical discussion of ad hoc, ab initio, and bootstrap signal acquisition methods, with examples from genome analytics and signal analytics Perfect for undergraduate and graduate students in machine learning and data analytics programs, Informatics and Machine Learning: From Martingales to Metaheuristics will also earn a place in the libraries of mathematicians, engineers, computer scientists, and life scientists with an interest in those subjects.

Machine Learning and Metaheuristics Algorithms, and Applications

Download Machine Learning and Metaheuristics Algorithms, and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811604193
Total Pages : 256 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Metaheuristics Algorithms, and Applications by : Sabu M. Thampi

Download or read book Machine Learning and Metaheuristics Algorithms, and Applications written by Sabu M. Thampi and published by Springer Nature. This book was released on 2021-02-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.

Metaheuristics

Download Metaheuristics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470496908
Total Pages : 625 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Metaheuristics by : El-Ghazali Talbi

Download or read book Metaheuristics written by El-Ghazali Talbi and published by John Wiley & Sons. This book was released on 2009-05-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

Recent Advances in Hybrid Metaheuristics for Data Clustering

Download Recent Advances in Hybrid Metaheuristics for Data Clustering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119551609
Total Pages : 196 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Hybrid Metaheuristics for Data Clustering by : Sourav De

Download or read book Recent Advances in Hybrid Metaheuristics for Data Clustering written by Sourav De and published by John Wiley & Sons. This book was released on 2020-06-02 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.

Machine Learning for Big Data Analysis

Download Machine Learning for Big Data Analysis PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110551438
Total Pages : 194 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Big Data Analysis by : Siddhartha Bhattacharyya

Download or read book Machine Learning for Big Data Analysis written by Siddhartha Bhattacharyya and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Cognitive Big Data Intelligence with a Metaheuristic Approach

Download Cognitive Big Data Intelligence with a Metaheuristic Approach PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323851185
Total Pages : 374 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Cognitive Big Data Intelligence with a Metaheuristic Approach by : Sushruta Mishra

Download or read book Cognitive Big Data Intelligence with a Metaheuristic Approach written by Sushruta Mishra and published by Academic Press. This book was released on 2021-11-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cognitive Big Data Intelligence with a Metaheuristic Approach presents an exact and compact organization of content relating to the latest metaheuristics methodologies based on new challenging big data application domains and cognitive computing. The combined model of cognitive big data intelligence with metaheuristics methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues in real-time. Various real-time case studies and implemented works are discussed in this book for better understanding and additional clarity. This book presents an essential platform for the use of cognitive technology in the field of Data Science. It covers metaheuristic methodologies that can be successful in a wide variety of problem settings in big data frameworks. - Provides a unique opportunity to present the work on the state-of-the-art of metaheuristics approach in the area of big data processing developing automated and intelligent models - Explains different, feasible applications and case studies where cognitive computing can be successfully implemented in big data analytics using metaheuristics algorithms - Provides a snapshot of the latest advances in the contribution of metaheuristics frameworks in cognitive big data applications to solve optimization problems

Artificial Intelligence, Evolutionary Computing and Metaheuristics

Download Artificial Intelligence, Evolutionary Computing and Metaheuristics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642296947
Total Pages : 797 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence, Evolutionary Computing and Metaheuristics by : Xin-She Yang

Download or read book Artificial Intelligence, Evolutionary Computing and Metaheuristics written by Xin-She Yang and published by Springer. This book was released on 2012-07-27 with total page 797 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.

Machine Learning: Concepts, Methodologies, Tools and Applications

Download Machine Learning: Concepts, Methodologies, Tools and Applications PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1609608194
Total Pages : 2174 pages
Book Rating : 4.6/5 (96 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning: Concepts, Methodologies, Tools and Applications by : Management Association, Information Resources

Download or read book Machine Learning: Concepts, Methodologies, Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2011-07-31 with total page 2174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Essentials of Metaheuristics (Second Edition)

Download Essentials of Metaheuristics (Second Edition) PDF Online Free

Author :
Publisher :
ISBN 13 : 9781300549628
Total Pages : 242 pages
Book Rating : 4.5/5 (496 download)

DOWNLOAD NOW!


Book Synopsis Essentials of Metaheuristics (Second Edition) by : Sean Luke

Download or read book Essentials of Metaheuristics (Second Edition) written by Sean Luke and published by . This book was released on 2012-12-20 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.

Optimization in Machine Learning and Applications

Download Optimization in Machine Learning and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811509948
Total Pages : 202 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Optimization in Machine Learning and Applications by : Anand J. Kulkarni

Download or read book Optimization in Machine Learning and Applications written by Anand J. Kulkarni and published by Springer Nature. This book was released on 2019-11-29 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.

Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches

Download Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 146662146X
Total Pages : 375 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches by : Yin, Peng-Yeng

Download or read book Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches written by Yin, Peng-Yeng and published by IGI Global. This book was released on 2012-10-31 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.

Metaheuristic Algorithms in Industry 4.0

Download Metaheuristic Algorithms in Industry 4.0 PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000435989
Total Pages : 302 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Metaheuristic Algorithms in Industry 4.0 by : Pritesh Shah

Download or read book Metaheuristic Algorithms in Industry 4.0 written by Pritesh Shah and published by CRC Press. This book was released on 2021-09-29 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to increasing industry 4.0 practices, massive industrial process data is now available for researchers for modelling and optimization. Artificial Intelligence methods can be applied to the ever-increasing process data to achieve robust control against foreseen and unforeseen system fluctuations. Smart computing techniques, machine learning, deep learning, computer vision, for example, will be inseparable from the highly automated factories of tomorrow. Effective cybersecurity will be a must for all Internet of Things (IoT) enabled work and office spaces. This book addresses metaheuristics in all aspects of Industry 4.0. It covers metaheuristic applications in IoT, cyber physical systems, control systems, smart computing, artificial intelligence, sensor networks, robotics, cybersecurity, smart factory, predictive analytics and more. Key features: Includes industrial case studies. Includes chapters on cyber physical systems, machine learning, deep learning, cybersecurity, robotics, smart manufacturing and predictive analytics. surveys current trends and challenges in metaheuristics and industry 4.0. Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.

Machine Learning and Metaheuristics Algorithms, and Applications

Download Machine Learning and Metaheuristics Algorithms, and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811543011
Total Pages : 276 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Metaheuristics Algorithms, and Applications by : Sabu M. Thampi

Download or read book Machine Learning and Metaheuristics Algorithms, and Applications written by Sabu M. Thampi and published by Springer Nature. This book was released on 2020-04-04 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2019, held in Trivandrum, India, in December 2019. The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.

Applications of Hybrid Metaheuristic Algorithms for Image Processing

Download Applications of Hybrid Metaheuristic Algorithms for Image Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030409775
Total Pages : 488 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Applications of Hybrid Metaheuristic Algorithms for Image Processing by : Diego Oliva

Download or read book Applications of Hybrid Metaheuristic Algorithms for Image Processing written by Diego Oliva and published by Springer Nature. This book was released on 2020-03-27 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.

Machine Learning and Metaheuristic Computation

Download Machine Learning and Metaheuristic Computation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 139422964X
Total Pages : 437 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Metaheuristic Computation by : Erik Cuevas

Download or read book Machine Learning and Metaheuristic Computation written by Erik Cuevas and published by John Wiley & Sons. This book was released on 2024-12-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.