Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Machine Intelligence Techniques For Data Analysis And Signal Processing
Download Machine Intelligence Techniques For Data Analysis And Signal Processing full books in PDF, epub, and Kindle. Read online Machine Intelligence Techniques For Data Analysis And Signal Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Machine Learning for Signal Processing by : Max A. Little
Download or read book Machine Learning for Signal Processing written by Max A. Little and published by Oxford University Press, USA. This book was released on 2019 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.
Book Synopsis Machine Intelligence Techniques for Data Analysis and Signal Processing by : Dilip Singh Sisodia
Download or read book Machine Intelligence Techniques for Data Analysis and Signal Processing written by Dilip Singh Sisodia and published by Springer Nature. This book was released on 2023-05-30 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the proceedings of the 4th International Conference on Machine Intelligence and Signal Processing (MISP2022). The contents of this book focus on research advancements in machine intelligence, signal processing, and applications. The book covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. It also includes the progress in signal processing to process the normal and abnormal categories of real-world signals such as signals generated from IoT devices, smart systems, speech, and videos and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), electromyogram (EMG), etc. This book proves a valuable resource for those in academia and industry.
Book Synopsis Machine Learning in Signal Processing by : Sudeep Tanwar
Download or read book Machine Learning in Signal Processing written by Sudeep Tanwar and published by CRC Press. This book was released on 2021-12-10 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Book Synopsis Machine Intelligence and Signal Analysis by : M. Tanveer
Download or read book Machine Intelligence and Signal Analysis written by M. Tanveer and published by Springer. This book was released on 2018-08-07 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.
Book Synopsis Machine Intelligence and Signal Processing by : Sonali Agarwal
Download or read book Machine Intelligence and Signal Processing written by Sonali Agarwal and published by Springer Nature. This book was released on 2020-02-25 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).
Author :Toshihisa Tanaka Publisher :Institution of Engineering and Technology ISBN 13 :1785613987 Total Pages :355 pages Book Rating :4.7/5 (856 download)
Book Synopsis Signal Processing and Machine Learning for Brain-Machine Interfaces by : Toshihisa Tanaka
Download or read book Signal Processing and Machine Learning for Brain-Machine Interfaces written by Toshihisa Tanaka and published by Institution of Engineering and Technology. This book was released on 2018-09-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions.
Book Synopsis Machine Learning in Bio-Signal Analysis and Diagnostic Imaging by : Nilanjan Dey
Download or read book Machine Learning in Bio-Signal Analysis and Diagnostic Imaging written by Nilanjan Dey and published by Academic Press. This book was released on 2018-11-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
Book Synopsis Signal Processing and Machine Learning with Applications by : Michael M. Richter
Download or read book Signal Processing and Machine Learning with Applications written by Michael M. Richter and published by Springer. This book was released on 2022-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Signal processing captures, interprets, describes and manipulates physical phenomena. Mathematics, statistics, probability, and stochastic processes are among the signal processing languages we use to interpret real-world phenomena, model them, and extract useful information. This book presents different kinds of signals humans use and applies them for human machine interaction to communicate. Signal Processing and Machine Learning with Applications presents methods that are used to perform various Machine Learning and Artificial Intelligence tasks in conjunction with their applications. It is organized in three parts: Realms of Signal Processing; Machine Learning and Recognition; and Advanced Applications and Artificial Intelligence. The comprehensive coverage is accompanied by numerous examples, questions with solutions, with historical notes. The book is intended for advanced undergraduate and postgraduate students, researchers and practitioners who are engaged with signal processing, machine learning and the applications.
Book Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy
Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Book Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi
Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Book Synopsis Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques by : Abdulhamit Subasi
Download or read book Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques written by Abdulhamit Subasi and published by Academic Press. This book was released on 2019-03-16 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series
Book Synopsis Signal Processing Techniques for Knowledge Extraction and Information Fusion by : Danilo Mandic
Download or read book Signal Processing Techniques for Knowledge Extraction and Information Fusion written by Danilo Mandic and published by Springer Science & Business Media. This book was released on 2008-03-23 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together the latest research achievements from signal processing and related disciplines, consolidating existing and proposed directions in DSP-based knowledge extraction and information fusion. The book includes contributions presenting both novel algorithms and existing applications, emphasizing on-line processing of real-world data. Readers discover applications that solve biomedical, industrial, and environmental problems.
Book Synopsis Intelligent Speech Signal Processing by : Nilanjan Dey
Download or read book Intelligent Speech Signal Processing written by Nilanjan Dey and published by Academic Press. This book was released on 2019-04-02 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.
Book Synopsis Signal Processing Techniques for Computational Health Informatics by : Md Atiqur Rahman Ahad
Download or read book Signal Processing Techniques for Computational Health Informatics written by Md Atiqur Rahman Ahad and published by Springer Nature. This book was released on 2020-10-07 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on signal processing techniques used in computational health informatics. As computational health informatics is the interdisciplinary study of the design, development, adoption and application of information and technology-based innovations, specifically, computational techniques that are relevant in health care, the book covers a comprehensive and representative range of signal processing techniques used in biomedical applications, including: bio-signal origin and dynamics, sensors used for data acquisition, artefact and noise removal techniques, feature extraction techniques in the time, frequency, time–frequency and complexity domain, and image processing techniques in different image modalities. Moreover, it includes an extensive discussion of security and privacy challenges, opportunities and future directions for computational health informatics in the big data age, and addresses the incorporation of recent techniques from the areas of artificial intelligence, deep learning and human–computer interaction. The systematic analysis of the state-of-the-art techniques covered here helps to further our understanding of the physiological processes involved and expandour capabilities in medical diagnosis and prognosis. In closing, the book, the first of its kind, blends state-of-the-art theory and practices of signal processing techniques inthe health informatics domain with real-world case studies building on those theories. As a result, it can be used as a text for health informatics courses to provide medics with cutting-edge signal processing techniques, or to introducehealth professionals who are already serving in this sector to some of the most exciting computational ideas that paved the way for the development of computational health informatics.
Book Synopsis Hyperspectral Image Analysis by : Saurabh Prasad
Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
Book Synopsis Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems by : E. Priya
Download or read book Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems written by E. Priya and published by Springer Nature. This book was released on 2020-09-21 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively reviews the various automated and semi-automated signal and image processing techniques, as well as deep-learning-based image analysis techniques, used in healthcare diagnostics. It highlights a range of data pre-processing methods used in signal processing for effective data mining in remote healthcare, and discusses pre-processing using filter techniques, noise removal, and contrast-enhanced methods for improving image quality. The book discusses the status quo of artificial intelligence in medical applications, as well as its future. Further, it offers a glimpse of feature extraction methods for reducing dimensionality and extracting discriminatory information hidden in biomedical signals. Given its scope, the book is intended for academics, researchers and practitioners interested in the latest real-world technological innovations.
Book Synopsis Machine Learning for Audio, Image and Video Analysis by : Francesco Camastra
Download or read book Machine Learning for Audio, Image and Video Analysis written by Francesco Camastra and published by Springer. This book was released on 2015-07-21 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.