Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Interface Thermodynamics With Applications To Atomistic Simulations
Download Interface Thermodynamics With Applications To Atomistic Simulations full books in PDF, epub, and Kindle. Read online Interface Thermodynamics With Applications To Atomistic Simulations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Computer Simulations of Surfaces and Interfaces by : Burkhard Dünweg
Download or read book Computer Simulations of Surfaces and Interfaces written by Burkhard Dünweg and published by Springer Science & Business Media. This book was released on 2003-12-31 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, from 9 to 20 September 2002
Book Synopsis Atomic-Scale Modelling of Electrochemical Systems by : Marko M. Melander
Download or read book Atomic-Scale Modelling of Electrochemical Systems written by Marko M. Melander and published by John Wiley & Sons. This book was released on 2021-09-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Book Synopsis Interfaces in Materials by : James M. Howe
Download or read book Interfaces in Materials written by James M. Howe and published by Wiley-Interscience. This book was released on 1997-02-27 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough exploration of the atomic structures and properties of the essential engineering interfaces—an invaluable resource for students, teachers, and professionals The most up-to-date, accessible guide to solid-vapor, solid-liquid, and solid-solid phase transformations, this innovative book contains the only unified treatment of these three central engineering interfaces. Employing a simple nearest-neighbor broken-bond model, Interfaces in Materials focuses on metal alloys in a straightforward approach that can be easily extended to all types of interfaces and materials. Enhanced with nearly 300 illustrations, along with extensive references and suggestions for further reading, this book provides: A simple, cohesive approach to understanding the atomic structure and properties of interfaces formed between solid, liquid, and vapor phases Self-contained discussions of each interface—allowing separate study of each phase transformation A comparative look at the different interfaces, including atomic structure and crystallography; anisotropy, roughening, and melting; interfacial stability and segregation; continuous and ledge growth models; and atomistic modeling An analysis of nearest-neighbor broken-bond results against thermodynamic and kinetic descriptions of the interfaces Problem sets at the end of each chapter, emphasizing the key concepts detailed in the text Spanning the fields of chemical, electrical and computer engineering, materials science, solid-state physics, and microscopy, Interfaces in Materials bridges a major gap in the literature of surface and interface science.
Book Synopsis Atomistic Simulations of Glasses by : Jincheng Du
Download or read book Atomistic Simulations of Glasses written by Jincheng Du and published by John Wiley & Sons. This book was released on 2022-03-29 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete reference to computer simulations of inorganic glass materials In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered. Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses In-depth examinations of glass surfaces and silicate glass-water interactions Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.
Book Synopsis Physics of Surfaces and Interfaces by : Harald Ibach
Download or read book Physics of Surfaces and Interfaces written by Harald Ibach and published by Springer Science & Business Media. This book was released on 2006-11-18 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
Download or read book ASM Handbook written by and published by . This book was released on 1990 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: These volumes cover the properties, processing, and applications of metals and nonmetallic engineering materials. They are designed to provide the authoritative information and data necessary for the appropriate selection of materials to meet critical design and performance criteria.
Book Synopsis Characterization and Behavior of Interfaces by : J. David Frost
Download or read book Characterization and Behavior of Interfaces written by J. David Frost and published by IOS Press. This book was released on 2010 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interfaces exist in every geotechnical system in many forms and at multiple scales. Although historically, they are often considered to be the weak link in a system, particularly as the result of a number of unexpected catastrophic failures, new insight gained over the past twenty years by researchers around the world has shown that it is possible to select combinations of materials and design an engineered interface so that it is at least as strong as the surrounding materials. These new insights have been gained as a result of experimental study, numerical modeling and analytical investigation of successful and failed systems. While individual technical papers have been presented and/or published in various forums and proceedings over the years, no technical event has ever been convened for the sole purpose of allowing for exchange of information and ideas pertaining to geotechnical interfaces. The research symposium held in September 2008 in Atlanta Georgia, USA, in conjunction with the Fourth International Symposium on Deformation Characteristics of Geomaterials (IS Atlanta 2008) at the Georgia Institute of Technology on The Characterization and Behavior of Interfaces addressed this deficiency and the papers presented at that event are contained in this publication. IOS Press is an international science, technical and medical publisher of high-quality books for academics, scientists, and professionals in all fields. Some of the areas we publish in: -Biomedicine -Oncology -Artificial intelligence -Databases and information systems -Maritime engineering -Nanotechnology -Geoengineering -All aspects of physics -E-governance -E-commerce -The knowledge economy -Urban studies -Arms control -Understanding and responding to terrorism -Medical informatics -Computer Sciences
Book Synopsis Heterogeneous Catalysts by : Wey Yang Teoh
Download or read book Heterogeneous Catalysts written by Wey Yang Teoh and published by John Wiley & Sons. This book was released on 2021-02-23 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.
Book Synopsis Integrative Computational Materials Engineering by : Georg J. Schmitz
Download or read book Integrative Computational Materials Engineering written by Georg J. Schmitz and published by John Wiley & Sons. This book was released on 2012-07-30 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the results of an ambitious project, this book summarizes the efforts towards an open, web-based modular and extendable simulation platform for materials engineering that allows simulations bridging several length scales. In so doing, it covers processes along the entire value chain and even describes such different classes of materials as metallic alloys and polymers. It comprehensively describes all structural ideas, the underlying concepts, standard specifications, the verification results obtained for different test cases and additionally how to utilize the platform as a user and how to join it as a provider. A resource for researchers, users and simulation software providers alike, the monograph provides an overview of the current status, serves as a generic manual for prospective users, and offers insights into the inner modular structure of the simulation platform.
Book Synopsis Transformations Selected Works of G.B. Olson on Materials, Microstrucutre, and Design by : C.E. Campbell
Download or read book Transformations Selected Works of G.B. Olson on Materials, Microstrucutre, and Design written by C.E. Campbell and published by ASM International. This book was released on 2017-10-01 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: ASM International and The Minerals, Metals and Materials Society (TMS) have collaborated to present a collection of the selected works of Dr. Greg B. Olson in honor of his 70th birthday in 2017. This collection highlights his influential contributions to the understanding of martensite transformations and the development and application of a systems design approach to materials. Part I: Martensite, with an Introduction by Sir Harry Bhadeshia, emphasizes Dr. Olson's work to develop a dislocation theory for martensite transformations, to improve the understanding of the statistical nature of martensite nucleation, and to expand use of quantitative microscopy to characterize phase transformations. Part II: Materials Design, with an Introduction by Dr. Charles Kuehmann, focuses on the application of a systems design approach to materials and the development of integrated computational design curriculum for undergraduate education. Part II includes several examples of the systems design approach to a variety of applications. The papers chosen for this collection were selected by the editors with input from Dr. Olson.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 1460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Book Synopsis Computational Pharmaceutics by : Defang Ouyang
Download or read book Computational Pharmaceutics written by Defang Ouyang and published by John Wiley & Sons. This book was released on 2015-07-20 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.
Book Synopsis Defects in Materials: Volume 209 by : Paul D. Bristowe
Download or read book Defects in Materials: Volume 209 written by Paul D. Bristowe and published by Mrs Proceedings. This book was released on 1991-04-26 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.
Book Synopsis Basics of Thermodynamics and Phase Transitions in Complex Intermetallics by : Esther Belin-Ferr
Download or read book Basics of Thermodynamics and Phase Transitions in Complex Intermetallics written by Esther Belin-Ferr and published by World Scientific. This book was released on 2008 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the first of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.
Book Synopsis Gas Adsorption in Metal-Organic Frameworks by : T. Grant Glover
Download or read book Gas Adsorption in Metal-Organic Frameworks written by T. Grant Glover and published by CRC Press. This book was released on 2018-09-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses the synthesis, characterization, and application of metal-organic frameworks (MOFs) for the purpose of adsorbing gases. It provides details on the fundamentals of thermodynamics, mass transfer, and diffusion that are commonly required when evaluating MOF materials for gas separation and storage applications and includes a discussion of molecular simulation tools needed to examine gas adsorption in MOFs. Additionally, the work presents techniques that can be used to characterize MOFs after gas adsorption has occurred and provides guidance on the water stability of these materials. Lastly, applications of MOFs are considered with a discussion of how to measure the gas storage capacity of MOFs, a discussion of how to screen MOFs to for filtration applications, and a discussion of the use of MOFs to perform industrial separations, such as olefin/paraffin separations. Throughout the work, fundamental information, such as a discussion on the calculation of MOF surface area and description of adsorption phenomena in packed-beds, is balanced with a discussion of the results from research literature.
Book Synopsis Understanding Molecular Simulation by : Daan Frenkel
Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Book Synopsis TMS 2016 145th Annual Meeting & Exhibition, Annual Meeting Supplemental Proceedings by : The Minerals, Metals & Materials Society (TMS)
Download or read book TMS 2016 145th Annual Meeting & Exhibition, Annual Meeting Supplemental Proceedings written by The Minerals, Metals & Materials Society (TMS) and published by Springer. This book was released on 2016-12-01 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: