Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Historical Aspects Of The Bayesian Controversy
Download Historical Aspects Of The Bayesian Controversy full books in PDF, epub, and Kindle. Read online Historical Aspects Of The Bayesian Controversy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Historical Aspects of the Bayesian Controversy by : Jean E. Weber
Download or read book Historical Aspects of the Bayesian Controversy written by Jean E. Weber and published by . This book was released on 1973 with total page 58 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Theory That Would Not Die by : Sharon Bertsch McGrayne
Download or read book The Theory That Would Not Die written by Sharon Bertsch McGrayne and published by Yale University Press. This book was released on 2011-05-17 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This account of how a once reviled theory, Baye’s rule, came to underpin modern life is both approachable and engrossing" (Sunday Times). A New York Times Book Review Editors’ Choice Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok. In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the generations-long human drama surrounding it. McGrayne traces the rule’s discovery by an 18th century amateur mathematician through its development by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—while practitioners relied on it to solve crises involving great uncertainty and scanty information, such as Alan Turing's work breaking Germany's Enigma code during World War II. McGrayne also explains how the advent of computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security. Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Book Synopsis Proving History by : Richard C. Carrier
Download or read book Proving History written by Richard C. Carrier and published by Prometheus Books. This book was released on 2012-04-03 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This in-depth discussion of New Testament scholarship and the challenges of history as a whole proposes Bayes’s Theorem, which deals with probabilities under conditions of uncertainty, as a solution to the problem of establishing reliable historical criteria. The author demonstrates that valid historical methods—not only in the study of Christian origins but in any historical study—can be described by, and reduced to, the logic of Bayes’s Theorem. Conversely, he argues that any method that cannot be reduced to this theorem is invalid and should be abandoned. Writing with thoroughness and clarity, the author explains Bayes’s Theorem in terms that are easily understandable to professional historians and laypeople alike, employing nothing more than well-known primary school math. He then explores precisely how the theorem can be applied to history and addresses numerous challenges to and criticisms of its use in testing or justifying the conclusions that historians make about the important persons and events of the past. The traditional and established methods of historians are analyzed using the theorem, as well as all the major "historicity criteria" employed in the latest quest to establish the historicity of Jesus. The author demonstrates not only the deficiencies of these approaches but also ways to rehabilitate them using Bayes’s Theorem. Anyone with an interest in historical methods, how historical knowledge can be justified, new applications of Bayes’s Theorem, or the study of the historical Jesus will find this book to be essential reading.
Book Synopsis Bayesians Versus Frequentists by : Jordi Vallverdú
Download or read book Bayesians Versus Frequentists written by Jordi Vallverdú and published by Springer. This book was released on 2015-11-06 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes the origins of statistical thinking as well as its related philosophical questions, such as causality, determinism or chance. Bayesian and frequentist approaches are subjected to a historical, cognitive and epistemological analysis, making it possible to not only compare the two competing theories, but to also find a potential solution. The work pursues a naturalistic approach, proceeding from the existence of numerosity in natural environments to the existence of contemporary formulas and methodologies to heuristic pragmatism, a concept introduced in the book’s final section. This monograph will be of interest to philosophers and historians of science and students in related fields. Despite the mathematical nature of the topic, no statistical background is required, making the book a valuable read for anyone interested in the history of statistics and human cognition.
Book Synopsis Handbook of Blind Source Separation by : Pierre Comon
Download or read book Handbook of Blind Source Separation written by Pierre Comon and published by Academic Press. This book was released on 2010-02-17 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis View-based 3-D Object Retrieval by : Yue Gao
Download or read book View-based 3-D Object Retrieval written by Yue Gao and published by Morgan Kaufmann. This book was released on 2014-12-04 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging research topic. View-based 3-D Object Retrieval introduces and discusses the fundamental challenges in view-based 3-D object retrieval, proposes a collection of selected state-of-the-art methods for accomplishing this task developed by the authors, and summarizes recent achievements in view-based 3-D object retrieval. Part I presents an Introduction to View-based 3-D Object Retrieval, Part II discusses View Extraction, Selection, and Representation, Part III provides a deep dive into View-Based 3-D Object Comparison, and Part IV looks at future research and developments including Big Data application and geographical location-based applications. - Systematically introduces view-based 3-D object retrieval, including problem definitions and settings, methodologies, and benchmark testing beds - Discusses several key challenges in view-based 3-D object retrieval, and introduces the state-of-the-art solutions - Presents the progression from general image retrieval techniques to view-based 3-D object retrieval - Introduces future research efforts in the areas of Big Data, feature extraction, and geographical location-based applications
Download or read book Bayes Rules! written by Alicia A. Johnson and published by CRC Press. This book was released on 2022-03-03 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics." Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
Book Synopsis The Oxford Handbook of Bayesian Econometrics by : John Geweke
Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Book Synopsis Classical Probability in the Enlightenment, New Edition by : Lorraine Daston
Download or read book Classical Probability in the Enlightenment, New Edition written by Lorraine Daston and published by Princeton University Press. This book was released on 2023-08-08 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: An award-winning history of the Enlightenment quest to devise a mathematical model of rationality What did it mean to be reasonable in the Age of Reason? Enlightenment mathematicians such as Blaise Pascal, Jakob Bernoulli, and Pierre Simon Laplace sought to answer this question, laboring over a theory of rational decision, action, and belief under conditions of uncertainty. Lorraine Daston brings to life their debates and philosophical arguments, charting the development and application of probability theory by some of the greatest thinkers of the age. Now with an incisive new preface, Classical Probability in the Enlightenment traces the emergence of new kind of mathematics designed to turn good sense into a reasonable calculus.
Book Synopsis Interpreting Probability by : David Howie
Download or read book Interpreting Probability written by David Howie and published by Cambridge University Press. This book was released on 2002-08-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term probability can be used in two main senses. In the frequency interpretation it is a limiting ratio in a sequence of repeatable events. In the Bayesian view, probability is a mental construct representing uncertainty. This 2002 book is about these two types of probability and investigates how, despite being adopted by scientists and statisticians in the eighteenth and nineteenth centuries, Bayesianism was discredited as a theory of scientific inference during the 1920s and 1930s. Through the examination of a dispute between two British scientists, the author argues that a choice between the two interpretations is not forced by pure logic or the mathematics of the situation, but depends on the experiences and aims of the individuals involved. The book should be of interest to students and scientists interested in statistics and probability theories and to general readers with an interest in the history, sociology and philosophy of science.
Book Synopsis Bayesian Psychometric Modeling by : Roy Levy
Download or read book Bayesian Psychometric Modeling written by Roy Levy and published by CRC Press. This book was released on 2017-07-28 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.
Download or read book Bayes Or Bust? written by John Earman and published by Bradford Books. This book was released on 1992 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is currently no viable alternative to the Bayesian analysis of scientific inference, yet the available versions of Bayesianism fail to do justice to several aspects of the testing and confirmation of scientific hypotheses. Bayes or Bust? provides the first balanced treatment of the complex set of issues involved in this nagging conundrum in the philosophy of science. Both Bayesians and anti-Bayesians will find a wealth of new insights on topics ranging from Bayes's original paper to contemporary formal learning theory. In a paper published posthumously in 1763, the Reverend Thomas Bayes made a seminal contribution to the understanding of "analogical or inductive reasoning." Building on his insights, modem Bayesians have developed an account of scientific inference that has attracted numerous champions as well as numerous detractors. Earman argues that Bayesianism provides the best hope for a comprehensive and unified account of scientific inference, yet the presently available versions of Bayesianisin fail to do justice to several aspects of the testing and confirming of scientific theories and hypotheses. By focusing on the need for a resolution to this impasse, Earman sharpens the issues on which a resolution turns. John Earman is Professor of History and Philosophy of Science at the University of Pittsburgh.
Download or read book Bayes' Rule written by James V. Stone and published by Sebtel Press. This book was released on 2013-06-01 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this richly illustrated book, a range of accessible examples are used to show how Bayes' rule is actually a natural consequence of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for the novice who wishes to become familiar with the basic principles of Bayesian analysis.
Book Synopsis The Indo-European Controversy by : Asya Pereltsvaig
Download or read book The Indo-European Controversy written by Asya Pereltsvaig and published by Cambridge University Press. This book was released on 2015-04-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book challenges media-celebrated evolutionary studies linking Indo-European languages to Neolithic Anatolia, instead defending traditional practices in historical linguistics.
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Book Synopsis Bayesian Methods in Health Economics by : Gianluca Baio
Download or read book Bayesian Methods in Health Economics written by Gianluca Baio and published by CRC Press. This book was released on 2012-11-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.