Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
High Order Two Point Boundary Value Problems
Download High Order Two Point Boundary Value Problems full books in PDF, epub, and Kindle. Read online High Order Two Point Boundary Value Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Boundary Value Problems From Higher Order Differential Equations by : Ravi P Agarwal
Download or read book Boundary Value Problems From Higher Order Differential Equations written by Ravi P Agarwal and published by World Scientific. This book was released on 1986-07-01 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Some ExamplesLinear ProblemsGreen's FunctionMethod of Complementary FunctionsMethod of AdjointsMethod of ChasingSecond Order EquationsError Estimates in Polynomial InterpolationExistence and UniquenessPicard's and Approximate Picard's MethodQuasilinearization and Approximate QuasilinearizationBest Possible Results: Weight Function TechniqueBest Possible Results: Shooting MethodsMonotone Convergence and Further ExistenceUniqueness Implies ExistenceCompactness Condition and Generalized SolutionsUniqueness Implies UniquenessBoundary Value FunctionsTopological MethodsBest Possible Results: Control Theory MethodsMatching MethodsMaximal SolutionsMaximum PrincipleInfinite Interval ProblemsEquations with Deviating Arguments Readership: Graduate students, numerical analysts as well as researchers who are studying open problems. Keywords:Boundary Value Problems;Ordinary Differential Equations;Green's Function;Quasilinearization;Shooting Methods;Maximal Solutions;Infinite Interval Problems
Book Synopsis Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations by : A.K. Aziz
Download or read book Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations written by A.K. Aziz and published by Academic Press. This book was released on 2014-05-10 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.
Book Synopsis Two-Point Boundary Value Problems: Lower and Upper Solutions by : C. De Coster
Download or read book Two-Point Boundary Value Problems: Lower and Upper Solutions written by C. De Coster and published by Elsevier. This book was released on 2006-03-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Book Synopsis Nonlinear Two Point Boundary Value Problems by : Bailey
Download or read book Nonlinear Two Point Boundary Value Problems written by Bailey and published by Academic Press. This book was released on 1968 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Two Point Boundary Value Problems
Book Synopsis Singular Differential and Integral Equations with Applications by : R.P. Agarwal
Download or read book Singular Differential and Integral Equations with Applications written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2003-07-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.
Book Synopsis Numerical Solution of Two Point Boundary Value Problems by : Herbert B. Keller
Download or read book Numerical Solution of Two Point Boundary Value Problems written by Herbert B. Keller and published by SIAM. This book was released on 1976-01-01 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lectures on a unified theory of and practical procedures for the numerical solution of very general classes of linear and nonlinear two point boundary-value problems.
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Approximation of Functions of Several Variables and Imbedding Theorems by : S.M. Nikol'skii
Download or read book Approximation of Functions of Several Variables and Imbedding Theorems written by S.M. Nikol'skii and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This English translation of my book "PribliZenie Funkcir Mnogih Peremennyh i Teoremy Vlozel1iya" is identical in content with the Rus sian original, published by "Nauka" in 1969. However, I have corrected a number of errors. I am grateful to the publishing house Springer-Verlag for making my book available to mathematicians who do not know Russian. I am also especially grateful to the translator, Professor John M. Dan skin, who has fulfilled his task with painstaking care. In doing so he has showed high qualifications both as a mathematician and as a translator of Russian, which is considered by many to be a very difficult language. The discussion in this book is restricted, for the most part, to func tions everywhere defined in n-dimensional space. The study of these questions for functions given on bounded regions requires new methods. In. connection with this I note that a new book, "Integral Represen tations of Functions and Imbedding Theorems", by O.V. Besov, V.P. Il'in, and myself, has just (May 1975) been published, by the publishing house "Nauka", in Moscow. Moscow, U.S.S.R., May 1975 S.M. Nikol'skir Translator's Note I am very grateful to Professor Nikol'skir, whose knowledge of English, which is considered by many to be a very difficult language, is excellent, for much help in achieving a correct translation of his book. And I join Professor Nikol'skir in thanking Springer-Verlag. The editing problem was considerable, and the typographical problem formidable
Book Synopsis Numerical Solution of Boundary Value Problems for Ordinary Differential Equations by : Uri M. Ascher
Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
Book Synopsis Focal Boundary Value Problems for Differential and Difference Equations by : R.P. Agarwal
Download or read book Focal Boundary Value Problems for Differential and Difference Equations written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of prob lems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the mono graph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the dis cretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research.
Book Synopsis The Optimal Homotopy Asymptotic Method by : Vasile Marinca
Download or read book The Optimal Homotopy Asymptotic Method written by Vasile Marinca and published by Springer. This book was released on 2015-04-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
Book Synopsis Partial Differential Equations and Boundary-Value Problems with Applications by : Mark A. Pinsky
Download or read book Partial Differential Equations and Boundary-Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Book Synopsis Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications by : Feliz Manuel Minhos
Download or read book Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications written by Feliz Manuel Minhos and published by World Scientific. This book was released on 2017-08-23 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive overview on different types of higher order boundary value problems defined on the half-line or on the real line (Sturm-Liouville and Lidstone types, impulsive, functional and problems defined by Hammerstein integral equations). It also includes classical and new methods and techniques to deal with the lack of compactness of the related operators.The reader will find a selection of original and recent results in this field, conditions to obtain solutions with particular qualitative properties, such as homoclinic and heteroclinic solutions and its relation with the solutions of Lidstone problems on all the real line.Each chapter contains applications to real phenomena, to classical equations or problems, with a common denominator: they are defined on unbounded intervals and the existing results in the literature are scarce or proven only numerically in discrete cases.The last part features some higher order functional problems, which generalize the classical two-point or multi-point boundary conditions, to more comprehensive data where an overall behavior of the unknown functions and their derivatives is involved.
Book Synopsis First Course In Integral Equations, A (Second Edition) by : Abdul-majid Wazwaz
Download or read book First Course In Integral Equations, A (Second Edition) written by Abdul-majid Wazwaz and published by World Scientific Publishing Company. This book was released on 2015-05-04 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.
Book Synopsis Elementary Differential Equations with Boundary Value Problems by : William F. Trench
Download or read book Elementary Differential Equations with Boundary Value Problems written by William F. Trench and published by Thomson Brooks/Cole. This book was released on 2001 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.
Book Synopsis Two-point Boundary Value Problems: Shooting Methods by : Sanford M. Roberts
Download or read book Two-point Boundary Value Problems: Shooting Methods written by Sanford M. Roberts and published by Elsevier Publishing Company. This book was released on 1972 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Methods for Two-Point Boundary-Value Problems by : Herbert B. Keller
Download or read book Numerical Methods for Two-Point Boundary-Value Problems written by Herbert B. Keller and published by Courier Dover Publications. This book was released on 2018-11-14 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.