Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Download Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030678296
Total Pages : 127 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration by : Alfonso Zamora Saiz

Download or read book Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration written by Alfonso Zamora Saiz and published by Springer Nature. This book was released on 2021-03-24 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin’s theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered. Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles. Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading, whose key prerequisites are general courses on algebraic geometry and differential geometry.

Holomorphic Vector Bundles over Compact Complex Surfaces

Download Holomorphic Vector Bundles over Compact Complex Surfaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540498451
Total Pages : 175 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Holomorphic Vector Bundles over Compact Complex Surfaces by : Vasile Brinzanescu

Download or read book Holomorphic Vector Bundles over Compact Complex Surfaces written by Vasile Brinzanescu and published by Springer. This book was released on 2006-11-14 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.

Algebraic Surfaces and Holomorphic Vector Bundles

Download Algebraic Surfaces and Holomorphic Vector Bundles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461216885
Total Pages : 333 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Surfaces and Holomorphic Vector Bundles by : Robert Friedman

Download or read book Algebraic Surfaces and Holomorphic Vector Bundles written by Robert Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.

Geometric Invariant Theory

Download Geometric Invariant Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540569633
Total Pages : 314 pages
Book Rating : 4.5/5 (696 download)

DOWNLOAD NOW!


Book Synopsis Geometric Invariant Theory by : David Mumford

Download or read book Geometric Invariant Theory written by David Mumford and published by Springer Science & Business Media. This book was released on 1994 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Invariant Theory" by Mumford/Fogarty (the firstedition was published in 1965, a second, enlarged editonappeared in 1982) is the standard reference on applicationsof invariant theory to the construction of moduli spaces.This third, revised edition has been long awaited for by themathematical community. It is now appearing in a completelyupdated and enlarged version with an additional chapter onthe moment map by Prof. Frances Kirwan (Oxford) and a fullyupdated bibliography of work in this area.The book deals firstly with actions of algebraic groups onalgebraic varieties, separating orbits by invariants andconstructionquotient spaces; and secondly with applicationsof this theory to the construction of moduli spaces.It is a systematic exposition of the geometric aspects ofthe classical theory of polynomial invariants.

The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds

Download The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839136
Total Pages : 112 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds by : Martin Lübke

Download or read book The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds written by Martin Lübke and published by American Mathematical Soc.. This book was released on 2006 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: We prove a very general Kobayashi-Hitchin correspondence on arbitrary compact Hermitian manifolds, and we discuss differential geometric properties of the corresponding moduli spaces. This correspondence refers to moduli spaces of ``universal holomorphic oriented pairs''. Most of the classical moduli problems in complex geometry (e. g. holomorphic bundles with reductive structure groups, holomorphic pairs, holomorphic Higgs pairs, Witten triples, arbitrary quiver moduli problems) are special cases of this universal classification problem. Our Kobayashi-Hitchin correspondence relates the complex geometric concept ``polystable oriented holomorphic pair'' to the existence of a reduction solving a generalized Hermitian-Einstein equation. The proof is based on the Uhlenbeck-Yau continuity method. Using ideas from Donaldson theory, we further introduce and investigate canonical Hermitian metrics on such moduli spaces. We discuss in detail remarkable classes of moduli spaces in the non-Kahlerian framework: Oriented holomorphic structures, Quot-spaces, oriented holomorphic pairs and oriented vortices, non-abelian Seiberg-Witten monopoles.

Geometry and Quantization of Moduli Spaces

Download Geometry and Quantization of Moduli Spaces PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319335782
Total Pages : 230 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Quantization of Moduli Spaces by : Vladimir Fock

Download or read book Geometry and Quantization of Moduli Spaces written by Vladimir Fock and published by Birkhäuser. This book was released on 2016-12-25 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.

The Geometry of Moduli Spaces of Sheaves

Download The Geometry of Moduli Spaces of Sheaves PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139485822
Total Pages : 345 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Moduli Spaces of Sheaves by : Daniel Huybrechts

Download or read book The Geometry of Moduli Spaces of Sheaves written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2010-05-27 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.

Differential Geometry of Complex Vector Bundles

Download Differential Geometry of Complex Vector Bundles PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400858682
Total Pages : 317 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Complex Vector Bundles by : Shoshichi Kobayashi

Download or read book Differential Geometry of Complex Vector Bundles written by Shoshichi Kobayashi and published by Princeton University Press. This book was released on 2014-07-14 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Mathematical Reviews

Download Mathematical Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 888 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Invariant Theory

Download Computational Invariant Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662049589
Total Pages : 272 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Computational Invariant Theory by : Harm Derksen

Download or read book Computational Invariant Theory written by Harm Derksen and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.

Strings and Geometry

Download Strings and Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821837153
Total Pages : 396 pages
Book Rating : 4.8/5 (371 download)

DOWNLOAD NOW!


Book Synopsis Strings and Geometry by : Clay Mathematics Institute. Summer School

Download or read book Strings and Geometry written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2004 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Annales de l'Institut Fourier

Download Annales de l'Institut Fourier PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 748 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Annales de l'Institut Fourier by :

Download or read book Annales de l'Institut Fourier written by and published by . This book was released on 2006 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Theory of Generalized Donaldson-Thomas Invariants

Download A Theory of Generalized Donaldson-Thomas Invariants PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852795
Total Pages : 212 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Theory of Generalized Donaldson-Thomas Invariants by : Dominic D. Joyce

Download or read book A Theory of Generalized Donaldson-Thomas Invariants written by Dominic D. Joyce and published by American Mathematical Soc.. This book was released on 2011 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.

Symplectic Techniques in Physics

Download Symplectic Techniques in Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521389907
Total Pages : 488 pages
Book Rating : 4.3/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Symplectic Techniques in Physics by : Victor Guillemin

Download or read book Symplectic Techniques in Physics written by Victor Guillemin and published by Cambridge University Press. This book was released on 1990-05-25 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symplectic geometry is very useful for formulating clearly and concisely problems in classical physics and also for understanding the link between classical problems and their quantum counterparts. It is thus a subject of interest to both mathematicians and physicists, though they have approached the subject from different viewpoints. This is the first book that attempts to reconcile these approaches. The authors use the uncluttered, coordinate-free approach to symplectic geometry and classical mechanics that has been developed by mathematicians over the course of the past thirty years, but at the same time apply the apparatus to a great number of concrete problems. Some of the themes emphasized in the book include the pivotal role of completely integrable systems, the importance of symmetries, analogies between classical dynamics and optics, the importance of symplectic tools in classical variational theory, symplectic features of classical field theories, and the principle of general covariance.

Lectures on K3 Surfaces

Download Lectures on K3 Surfaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316797252
Total Pages : 499 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Lectures on K3 Surfaces by : Daniel Huybrechts

Download or read book Lectures on K3 Surfaces written by Daniel Huybrechts and published by Cambridge University Press. This book was released on 2016-09-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Grassmannians, Moduli Spaces, and Vector Bundles

Download Grassmannians, Moduli Spaces, and Vector Bundles PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821883763
Total Pages : 190 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Grassmannians, Moduli Spaces, and Vector Bundles by :

Download or read book Grassmannians, Moduli Spaces, and Vector Bundles written by and published by American Mathematical Soc.. This book was released on with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dirichlet Branes and Mirror Symmetry

Download Dirichlet Branes and Mirror Symmetry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821838482
Total Pages : 698 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Dirichlet Branes and Mirror Symmetry by :

Download or read book Dirichlet Branes and Mirror Symmetry written by and published by American Mathematical Soc.. This book was released on 2009 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in string theory has generated a rich interaction with algebraic geometry, with exciting work that includes the Strominger-Yau-Zaslow conjecture. This monograph builds on lectures at the 2002 Clay School on Geometry and String Theory that sought to bridge the gap between the languages of string theory and algebraic geometry.