Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Gaussian Random Vectors And Their Reproducing Kernel Hilbert Spaces
Download Gaussian Random Vectors And Their Reproducing Kernel Hilbert Spaces full books in PDF, epub, and Kindle. Read online Gaussian Random Vectors And Their Reproducing Kernel Hilbert Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Reproducing Kernel Hilbert Spaces in Probability and Statistics by : Alain Berlinet
Download or read book Reproducing Kernel Hilbert Spaces in Probability and Statistics written by Alain Berlinet and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Book Synopsis An Introduction to the Theory of Reproducing Kernel Hilbert Spaces by : Vern I. Paulsen
Download or read book An Introduction to the Theory of Reproducing Kernel Hilbert Spaces written by Vern I. Paulsen and published by Cambridge University Press. This book was released on 2016-04-11 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reproducing kernel Hilbert spaces have developed into an important tool in many areas, especially statistics and machine learning, and they play a valuable role in complex analysis, probability, group representation theory, and the theory of integral operators. This unique text offers a unified overview of the topic, providing detailed examples of applications, as well as covering the fundamental underlying theory, including chapters on interpolation and approximation, Cholesky and Schur operations on kernels, and vector-valued spaces. Self-contained and accessibly written, with exercises at the end of each chapter, this unrivalled treatment of the topic serves as an ideal introduction for graduate students across mathematics, computer science, and engineering, as well as a useful reference for researchers working in functional analysis or its applications.
Book Synopsis Kernel Mean Embedding of Distributions by : Krikamol Muandet
Download or read book Kernel Mean Embedding of Distributions written by Krikamol Muandet and published by . This book was released on 2017-06-28 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics.
Book Synopsis Stochastic Analysis for Gaussian Random Processes and Fields by : Vidyadhar S. Mandrekar
Download or read book Stochastic Analysis for Gaussian Random Processes and Fields written by Vidyadhar S. Mandrekar and published by CRC Press. This book was released on 2015-06-23 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with preliminary results on covariance and associated RKHS
Book Synopsis Gaussian Random Functions by : M.A. Lifshits
Download or read book Gaussian Random Functions written by M.A. Lifshits and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is well known that the normal distribution is the most pleasant, one can even say, an exemplary object in the probability theory. It combines almost all conceivable nice properties that a distribution may ever have: symmetry, stability, indecomposability, a regular tail behavior, etc. Gaussian measures (the distributions of Gaussian random functions), as infinite-dimensional analogues of tht
Book Synopsis Kernels for Vector-Valued Functions by : Mauricio A. Álvarez
Download or read book Kernels for Vector-Valued Functions written by Mauricio A. Álvarez and published by Foundations & Trends. This book was released on 2012 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph reviews different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and regularization methods.
Book Synopsis Lectures on Probability Theory and Statistics by : Roland Dobrushin
Download or read book Lectures on Probability Theory and Statistics written by Roland Dobrushin and published by Springer. This book was released on 2006-11-13 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Normal Distribution by : Wlodzimierz Bryc
Download or read book The Normal Distribution written by Wlodzimierz Bryc and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a concise presentation of the normal distribution on the real line and its counterparts on more abstract spaces, which we shall call the Gaussian distributions. The material is selected towards presenting characteristic properties, or characterizations, of the normal distribution. There are many such properties and there are numerous rel evant works in the literature. In this book special attention is given to characterizations generated by the so called Maxwell's Theorem of statistical mechanics, which is stated in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin sically, and as techniques that are worth being aware of. The book may also serve as a good introduction to diverse analytic methods of probability theory. We use characteristic functions, tail estimates, and occasionally dive into complex analysis. In the book we also show how the characteristic properties can be used to prove important results about the Gaussian processes and the abstract Gaussian vectors. For instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of the integrability of abstract Gaussian vectors. The central limit theorem is obtained via characterizations in Section 7.3.
Book Synopsis Stochastic Processes by : Stamatis Cambanis
Download or read book Stochastic Processes written by Stamatis Cambanis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume celebrates the many contributions which Gopinath Kallianpur has made to probability and statistics. It comprises 40 chapters which taken together survey the wide sweep of ideas which have been influenced by Professor Kallianpur's writing and research.
Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Fractional Fields and Applications by : Serge Cohen
Download or read book Fractional Fields and Applications written by Serge Cohen and published by Springer Science & Business Media. This book was released on 2013-05-29 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse's Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness's seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Lévy fields. The Lévy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key issue concerns the identification of fractional parameters. This is the raison d'être of the statistics chapter, where generalized quadratic variations methods are mainly used for estimating fractional parameters. Last but not least, the simulation is addressed in the last chapter. Unlike the previous issues, the simulation of fractional fields is still an area of ongoing research. The algorithms presented in this chapter are efficient but do not claim to close the debate.
Book Synopsis Probability in Banach Spaces by : Michel Ledoux
Download or read book Probability in Banach Spaces written by Michel Ledoux and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
Book Synopsis Theory of Random Sets by : Ilya Molchanov
Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer. This book was released on 2017-12-14 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.
Author :Gregory E Fasshauer Publisher :World Scientific Publishing Company ISBN 13 :9814630152 Total Pages :537 pages Book Rating :4.8/5 (146 download)
Book Synopsis Kernel-based Approximation Methods Using Matlab by : Gregory E Fasshauer
Download or read book Kernel-based Approximation Methods Using Matlab written by Gregory E Fasshauer and published by World Scientific Publishing Company. This book was released on 2015-07-30 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an attempt to introduce application scientists and graduate students to the exciting topic of positive definite kernels and radial basis functions, this book presents modern theoretical results on kernel-based approximation methods and demonstrates their implementation in various settings. The authors explore the historical context of this fascinating topic and explain recent advances as strategies to address long-standing problems. Examples are drawn from fields as diverse as function approximation, spatial statistics, boundary value problems, machine learning, surrogate modeling and finance. Researchers from those and other fields can recreate the results within using the documented MATLAB code, also available through the online library. This combination of a strong theoretical foundation and accessible experimentation empowers readers to use positive definite kernels on their own problems of interest.
Book Synopsis Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization by : Houman Owhadi
Download or read book Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization written by Houman Owhadi and published by Cambridge University Press. This book was released on 2019-10-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, applied mathematics, and computer science, and particularly researchers interested in drawing on and developing this interface between approximation, inference, and learning.
Book Synopsis Information Theoretic Learning by : Jose C. Principe
Download or read book Information Theoretic Learning written by Jose C. Principe and published by Springer Science & Business Media. This book was released on 2010-04-06 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.