Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Foundations Of Mathematical Logic
Download Foundations Of Mathematical Logic full books in PDF, epub, and Kindle. Read online Foundations Of Mathematical Logic ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Foundations of Mathematical Logic by : Haskell Brooks Curry
Download or read book Foundations of Mathematical Logic written by Haskell Brooks Curry and published by Courier Corporation. This book was released on 1977-01-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.
Book Synopsis Fundamentals of Mathematical Logic by : Peter G. Hinman
Download or read book Fundamentals of Mathematical Logic written by Peter G. Hinman and published by CRC Press. This book was released on 2018-10-08 with total page 895 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
Book Synopsis Foundations of Logic and Mathematics by : Yves Nievergelt
Download or read book Foundations of Logic and Mathematics written by Yves Nievergelt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Book Synopsis The Logical Foundations of Mathematics by : William S. Hatcher
Download or read book The Logical Foundations of Mathematics written by William S. Hatcher and published by Elsevier. This book was released on 2014-05-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.
Book Synopsis Mathematical Logic and the Foundations of Mathematics by : G. T. Kneebone
Download or read book Mathematical Logic and the Foundations of Mathematics written by G. T. Kneebone and published by Dover Publications. This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for students intending to specialize in the topic. Part I discusses traditional and symbolic logic. Part II explores the foundations of mathematics. Part III focuses on the philosophy of mathematics.
Book Synopsis Logical Foundations of Mathematics and Computational Complexity by : Pavel Pudlák
Download or read book Logical Foundations of Mathematics and Computational Complexity written by Pavel Pudlák and published by Springer Science & Business Media. This book was released on 2013-04-22 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.
Book Synopsis Mathematical Logic by : H.-D. Ebbinghaus
Download or read book Mathematical Logic written by H.-D. Ebbinghaus and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Book Synopsis Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory by : Douglas Cenzer
Download or read book Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory written by Douglas Cenzer and published by World Scientific. This book was released on 2020-04-04 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.
Book Synopsis A Tour Through Mathematical Logic by : Robert S. Wolf
Download or read book A Tour Through Mathematical Logic written by Robert S. Wolf and published by American Mathematical Soc.. This book was released on 2005-12-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Tour Through Mathematical Logic provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.
Book Synopsis Elements of Mathematical Logic by : Georg Kreisel
Download or read book Elements of Mathematical Logic written by Georg Kreisel and published by Elsevier. This book was released on 1967 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Foundations of Mathematics and Other Logical Essays by : Frank Plumpton Ramsey
Download or read book The Foundations of Mathematics and Other Logical Essays written by Frank Plumpton Ramsey and published by Psychology Press. This book was released on 2000 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: First Published in 2000. Routledge is an imprint of Taylor & Francis, an informa company.
Book Synopsis The Foundations of Mathematics by : Kenneth Kunen
Download or read book The Foundations of Mathematics written by Kenneth Kunen and published by . This book was released on 2009 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.
Book Synopsis Leśniewski's Systems of Logic and Foundations of Mathematics by : Rafal Urbaniak
Download or read book Leśniewski's Systems of Logic and Foundations of Mathematics written by Rafal Urbaniak and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This meticulous critical assessment of the ground-breaking work of philosopher Stanislaw Leśniewski focuses exclusively on primary texts and explores the full range of output by one of the master logicians of the Lvov-Warsaw school. The author’s nuanced survey eschews secondary commentary, analyzing Leśniewski's core philosophical views and evaluating the formulations that were to have such a profound influence on the evolution of mathematical logic. One of the undisputed leaders of the cohort of brilliant logicians that congregated in Poland in the early twentieth century, Leśniewski was a guide and mentor to a generation of celebrated analytical philosophers (Alfred Tarski was his PhD student). His primary achievement was a system of foundational mathematical logic intended as an alternative to the Principia Mathematica of Alfred North Whitehead and Bertrand Russell. Its three strands—‘protothetic’, ‘ontology’, and ‘mereology’, are detailed in discrete sections of this volume, alongside a wealth other chapters grouped to provide the fullest possible coverage of Leśniewski’s academic output. With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great pioneers.
Book Synopsis The Foundations of Mathematics in the Theory of Sets by : John P. Mayberry
Download or read book The Foundations of Mathematics in the Theory of Sets written by John P. Mayberry and published by Cambridge University Press. This book was released on 2000 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.
Download or read book Mathematical Logic written by Wei Li and published by Springer Science & Business Media. This book was released on 2010-02-26 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Book Synopsis Mathematical Logic by : Stephen Cole Kleene
Download or read book Mathematical Logic written by Stephen Cole Kleene and published by Courier Corporation. This book was released on 2013-04-22 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents include an elementary but thorough overview of mathematical logic of 1st order; formal number theory; surveys of the work by Church, Turing, and others, including Gödel's completeness theorem, Gentzen's theorem, more.
Book Synopsis An Algebraic Introduction to Mathematical Logic by : D.W. Barnes
Download or read book An Algebraic Introduction to Mathematical Logic written by D.W. Barnes and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.