Evaluating and Certifying the Adversarial Robustness of Neural Language Models

Download Evaluating and Certifying the Adversarial Robustness of Neural Language Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Evaluating and Certifying the Adversarial Robustness of Neural Language Models by : Muchao Ye

Download or read book Evaluating and Certifying the Adversarial Robustness of Neural Language Models written by Muchao Ye and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Language models (LMs) built by deep neural networks (DNNs) have achieved great success in various areas of artificial intelligence, which have played an increasingly vital role in profound applications including chatbots and smart healthcare. Nonetheless, the vulnerability of DNNs against adversarial examples still threatens the application of neural LMs to safety-critical tasks. To specify, DNNs will change their correct predictions into incorrect ones when small perturbations are added to the original input texts. In this dissertation, we identify key challenges in evaluating and certifying the adversarial robustness of neural LMs and bridge those gaps through efficient hard-label text adversarial attacks and a unified certified robust training framework. The first step of developing neural LMs with high adversarial robustness is evaluating whether they are empirically robust against perturbed texts. The vital technique related to that is the text adversarial attack, which aims to construct a text that can fool LMs. Ideally, it shall output high-quality adversarial examples in a realistic setting with high efficiency. However, current evaluation pipelines proposed in the realistic hard-label setting adopt heuristic search methods, consequently meeting an inefficiency problem. To tackle this limitation, we introduce a series of hard-label text adversarial attack methods, which successfully tackle the inefficiency problem by using a pretrained word embedding space as an intermediate. A deep dive into this idea illustrates that utilizing an estimated decision boundary in the introduced word embedding space helps improve the quality of crafted adversarial examples. The ultimate goal of constructing robust neural LMs is obtaining ones for which adversarial examples do not exist, which can be realized through certified robust training. The research community has proposed different types of certified robust training either in the discrete input space or in the continuous latent feature space. We discover the structural gap within current pipelines and unify them in the word embedding space. By removing unnecessary bound computation modules, i.e., interval bound propagation, and harnessing a new decoupled regularization learning paradigm, our unification can provide a stronger robustness guarantee. Given the aforementioned contributions, we believe our findings will help contribute to the development of robust neural LMs.

ECML PKDD 2020 Workshops

Download ECML PKDD 2020 Workshops PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030659658
Total Pages : 619 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis ECML PKDD 2020 Workshops by : Irena Koprinska

Download or read book ECML PKDD 2020 Workshops written by Irena Koprinska and published by Springer Nature. This book was released on 2021-02-01 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the workshops which complemented the 20th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2020. Due to the COVID-19 pandemic the conference and workshops were held online. The 43 papers presented in volume were carefully reviewed and selected from numerous submissions. The volume presents the papers that have been accepted for the following workshops: 5th Workshop on Data Science for Social Good, SoGood 2020; Workshop on Parallel, Distributed and Federated Learning, PDFL 2020; Second Workshop on Machine Learning for Cybersecurity, MLCS 2020, 9th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2020, Workshop on Data Integration and Applications, DINA 2020, Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning, EDML 2020, Second International Workshop on eXplainable Knowledge Discovery in Data Mining, XKDD 2020; 8th International Workshop on News Recommendation and Analytics, INRA 2020. The papers from INRA 2020 are published open access and licensed under the terms of the Creative Commons Attribution 4.0 International License.

Metric Learning

Download Metric Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303101572X
Total Pages : 139 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Metric Learning by : Aurélien Muise

Download or read book Metric Learning written by Aurélien Muise and published by Springer Nature. This book was released on 2022-05-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval. Table of Contents: Introduction / Metrics / Properties of Metric Learning Algorithms / Linear Metric Learning / Nonlinear and Local Metric Learning / Metric Learning for Special Settings / Metric Learning for Structured Data / Generalization Guarantees for Metric Learning / Applications / Conclusion / Bibliography / Authors' Biographies

Adversarial Robustness for Machine Learning

Download Adversarial Robustness for Machine Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128242574
Total Pages : 300 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Robustness for Machine Learning by : Pin-Yu Chen

Download or read book Adversarial Robustness for Machine Learning written by Pin-Yu Chen and published by Academic Press. This book was released on 2022-08-20 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and veri?cation. Sections cover adversarial attack, veri?cation and defense, mainly focusing on image classi?cation applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems. - Summarizes the whole field of adversarial robustness for Machine learning models - Provides a clearly explained, self-contained reference - Introduces formulations, algorithms and intuitions - Includes applications based on adversarial robustness

Next Generation AI Language Models in Research

Download Next Generation AI Language Models in Research PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040157327
Total Pages : 349 pages
Book Rating : 4.0/5 (41 download)

DOWNLOAD NOW!


Book Synopsis Next Generation AI Language Models in Research by : Kashif Naseer Qureshi

Download or read book Next Generation AI Language Models in Research written by Kashif Naseer Qureshi and published by CRC Press. This book was released on 2024-11-13 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this comprehensive and cutting-edge volume, Qureshi and Jeon bring together experts from around the world to explore the potential of artificial intelligence models in research and discuss the potential benefits and the concerns and challenges that the rapid development of this field has raised. The international chapter contributor group provides a wealth of technical information on different aspects of AI, including key aspects of AI, deep learning and machine learning models for AI, natural language processing and computer vision, reinforcement learning, ethics and responsibilities, security, practical implementation, and future directions. The contents are balanced in terms of theory, methodologies, and technical aspects, and contributors provide case studies to clearly illustrate the concepts and technical discussions throughout. Readers will gain valuable insights into how AI can revolutionize their work in fields including data analytics and pattern identification, healthcare research, social science research, and more, and improve their technical skills, problem-solving abilities, and evidence-based decision-making. Additionally, they will be cognizant of the limitations and challenges, the ethical implications, and security concerns related to language models, which will enable them to make more informed choices regarding their implementation. This book is an invaluable resource for undergraduate and graduate students who want to understand AI models, recent trends in the area, and technical and ethical aspects of AI. Companies involved in AI development or implementing AI in various fields will also benefit from the book’s discussions on both the technical and ethical aspects of this rapidly growing field.

Computer Vision – ECCV 2022 Workshops

Download Computer Vision – ECCV 2022 Workshops PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031250567
Total Pages : 784 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2022 Workshops by : Leonid Karlinsky

Download or read book Computer Vision – ECCV 2022 Workshops written by Leonid Karlinsky and published by Springer Nature. This book was released on 2023-02-14 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 8-volume set, comprising the LNCS books 13801 until 13809, constitutes the refereed proceedings of 38 out of the 60 workshops held at the 17th European Conference on Computer Vision, ECCV 2022. The conference took place in Tel Aviv, Israel, during October 23-27, 2022; the workshops were held hybrid or online. The 367 full papers included in this volume set were carefully reviewed and selected for inclusion in the ECCV 2022 workshop proceedings. They were organized in individual parts as follows: Part I: W01 - AI for Space; W02 - Vision for Art; W03 - Adversarial Robustness in the Real World; W04 - Autonomous Vehicle Vision Part II: W05 - Learning With Limited and Imperfect Data; W06 - Advances in Image Manipulation; Part III: W07 - Medical Computer Vision; W08 - Computer Vision for Metaverse; W09 - Self-Supervised Learning: What Is Next?; Part IV: W10 - Self-Supervised Learning for Next-Generation Industry-Level Autonomous Driving; W11 - ISIC Skin Image Analysis; W12 - Cross-Modal Human-Robot Interaction; W13 - Text in Everything; W14 - BioImage Computing; W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications; W16 - AI for Creative Video Editing and Understanding; W17 - Visual Inductive Priors for Data-Efficient Deep Learning; W18 - Mobile Intelligent Photography and Imaging; Part V: W19 - People Analysis: From Face, Body and Fashion to 3D Virtual Avatars; W20 - Safe Artificial Intelligence for Automated Driving; W21 - Real-World Surveillance: Applications and Challenges; W22 - Affective Behavior Analysis In-the-Wild; Part VI: W23 - Visual Perception for Navigation in Human Environments: The JackRabbot Human Body Pose Dataset and Benchmark; W24 - Distributed Smart Cameras; W25 - Causality in Vision; W26 - In-Vehicle Sensing and Monitorization; W27 - Assistive Computer Vision and Robotics; W28 - Computational Aspects of Deep Learning; Part VII: W29 - Computer Vision for Civil and Infrastructure Engineering; W30 - AI-Enabled Medical Image Analysis: Digital Pathology and Radiology/COVID19; W31 - Compositional and Multimodal Perception; Part VIII: W32 - Uncertainty Quantification for Computer Vision; W33 - Recovering 6D Object Pose; W34 - Drawings and Abstract Imagery: Representation and Analysis; W35 - Sign Language Understanding; W36 - A Challenge for Out-of-Distribution Generalization in Computer Vision; W37 - Vision With Biased or Scarce Data; W38 - Visual Object Tracking Challenge.

ECAI 2023

Download ECAI 2023 PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 164368437X
Total Pages : 3328 pages
Book Rating : 4.6/5 (436 download)

DOWNLOAD NOW!


Book Synopsis ECAI 2023 by : K. Gal

Download or read book ECAI 2023 written by K. Gal and published by IOS Press. This book was released on 2023-10-18 with total page 3328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.

Mastering Large Language Models with Python

Download Mastering Large Language Models with Python PDF Online Free

Author :
Publisher : Orange Education Pvt Ltd
ISBN 13 : 8197081824
Total Pages : 547 pages
Book Rating : 4.1/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Mastering Large Language Models with Python by : Raj Arun R

Download or read book Mastering Large Language Models with Python written by Raj Arun R and published by Orange Education Pvt Ltd. This book was released on 2024-04-12 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index

Programming Languages and Systems

Download Programming Languages and Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642288685
Total Pages : 614 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Programming Languages and Systems by : Helmut Seidl

Download or read book Programming Languages and Systems written by Helmut Seidl and published by Springer Science & Business Media. This book was released on 2012-03-14 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 21st European Symposium on Programming, ESOP 2012, held in Tallinn, Estonia, as part of ETAPS 2012, in March/April 2012. The 28 full papers, presented together with one full length invited talk, were carefully reviewed and selected from 92 submissions. Papers were invited on all aspects of programming language research, including: programming paradigms and styles, methods and tools to write and specify programs and languages, methods and tools for reasoning about programs, methods and tools for implementation, and concurrency and distribution.

PROCEEDINGS OF THE 23RD CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2023

Download PROCEEDINGS OF THE 23RD CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2023 PDF Online Free

Author :
Publisher : TU Wien Academic Press
ISBN 13 : 3854480601
Total Pages : 332 pages
Book Rating : 4.8/5 (544 download)

DOWNLOAD NOW!


Book Synopsis PROCEEDINGS OF THE 23RD CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2023 by : Alexander Nadel

Download or read book PROCEEDINGS OF THE 23RD CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2023 written by Alexander Nadel and published by TU Wien Academic Press. This book was released on 2023-10-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system testing.

Static Analysis

Download Static Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030323048
Total Pages : 484 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Static Analysis by : Bor-Yuh Evan Chang

Download or read book Static Analysis written by Bor-Yuh Evan Chang and published by Springer Nature. This book was released on 2019-10-05 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 26th International Symposium on Static Analysis, SAS 2019, held in Porto, Portugal, in October 2019. The 20 regular papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are grouped in topical sections on pointers and dataflow; languages and decidability; numerical; trends: assuring machine learning; synthesis and security; and temporal properties and termination.

Computer Vision – ECCV 2022

Download Computer Vision – ECCV 2022 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303119778X
Total Pages : 804 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2022 by : Shai Avidan

Download or read book Computer Vision – ECCV 2022 written by Shai Avidan and published by Springer Nature. This book was released on 2022-11-02 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Automated Technology for Verification and Analysis

Download Automated Technology for Verification and Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030888851
Total Pages : 384 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Automated Technology for Verification and Analysis by : Zhe Hou

Download or read book Automated Technology for Verification and Analysis written by Zhe Hou and published by Springer Nature. This book was released on 2021-10-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th International Symposium on Automated Technology for Verification and Analysis, ATVA 2021, held in Gold Coast, Australia in October 2021. The symposium is dedicated to promoting research in theoretical and practical aspects of automated analysis, verification and synthesis by providing an international venue for the researchers to present new results. The 19 regular papers presented together with 4 tool papers and 1 invited paper were carefully reviewed and selected from 75 submissions. The papers are divided into the following topical sub-headings: Automata Theory; Machine learning for Formal Methods; Theorem Proving and Tools; Model Checking; Probabilistic Analysis; Software and Hardware Verification; System Synthesis and Approximation; and Verification of Machine Learning.

Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology

Download Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 579 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology by : Burrell, Darrell Norman

Download or read book Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology written by Burrell, Darrell Norman and published by IGI Global. This book was released on 2024-01-15 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: The longstanding practice of keeping academic disciplines separate has been a barrier to effectively addressing the complex challenges in our world. The boundaries separating fields like healthcare, social sciences, and technology have obscured the potential for interdisciplinary collaboration, preventing us from unlocking innovative solutions to the most pressing issues of our time. As a result, the critical problems we face, from healthcare inequities to technological advancements with ethical dilemmas, have remained largely unresolved. This fragmented approach to academic inquiry has left a void in our quest to tackle these challenges effectively. The solution is found within the pages of Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology. This groundbreaking compendium illuminates the transformative potential of interdisciplinary collaboration, offering direction and support in the form of knowledge for scholars, researchers, practitioners, and students committed to solving real-world problems. By harnessing the collective wisdom of diverse disciplines, the book demonstrates how convergence across healthcare, social sciences, organizational behavior, and technology can lead to groundbreaking insights and solutions. It showcases success stories and innovative strategies that drive positive change within our societies, offering a roadmap towards a brighter, more interconnected future.

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030630765
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Qiang Yang

Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Software Verification and Formal Methods for ML-Enabled Autonomous Systems

Download Software Verification and Formal Methods for ML-Enabled Autonomous Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031212223
Total Pages : 213 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Software Verification and Formal Methods for ML-Enabled Autonomous Systems by : Omri Isac

Download or read book Software Verification and Formal Methods for ML-Enabled Autonomous Systems written by Omri Isac and published by Springer Nature. This book was released on 2022-12-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th International Workshop on Software Verification and Formal Methods for ML-Enables Autonomous Systems, FoMLAS 2022, and the 15th International Workshop on Numerical Software Verification, NSV 2022, which took place in Haifa, Israel, in July/August 2022. The volume contains 8 full papers from the FoMLAS 2022 workshop and 3 full papers from the NSV 2022 workshop. The FoMLAS workshop is dedicated to the development of novel formal methods techniques to discussing on how formal methods can be used to increase predictability, explainability, and accountability of ML-enabled autonomous systems. NSV 2022 is focusing on the challenges of the verification of cyber-physical systems with machine learning components.