Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Essential Quantum Calculus
Download Essential Quantum Calculus full books in PDF, epub, and Kindle. Read online Essential Quantum Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Essential Quantum Calculus by : N.B. Singh
Download or read book Essential Quantum Calculus written by N.B. Singh and published by N.B. Singh. This book was released on with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Essential Quantum Calculus" is a concise and accessible guide that demystifies quantum calculus, offering readers a fundamental understanding of its principles. This book provides a clear introduction to the mathematical concepts essential for grasping quantum mechanics, making it an indispensable resource for students and enthusiasts seeking a solid foundation in the intricate world of quantum physics
Download or read book Quantum Calculus written by Victor Kac and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simply put, quantum calculus is ordinary calculus without taking limits. This undergraduate text develops two types of quantum calculi, the q-calculus and the h-calculus. As this book develops quantum calculus along the lines of traditional calculus, the reader discovers, with a remarkable inevitability, many important notions and results of classical mathematics. This book is written at the level of a first course in calculus and linear algebra and is aimed at undergraduate and beginning graduate students in mathematics, computer science, and physics. It is based on lectures and seminars given by MIT Professor Kac over the last few years at MIT.
Book Synopsis A Comprehensive Treatment of q-Calculus by : Thomas Ernst
Download or read book A Comprehensive Treatment of q-Calculus written by Thomas Ernst and published by Springer Science & Business Media. This book was released on 2012-09-08 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few.
Book Synopsis An Introduction to Quantum Stochastic Calculus by : K.R. Parthasarathy
Download or read book An Introduction to Quantum Stochastic Calculus written by K.R. Parthasarathy and published by Birkhäuser. This book was released on 2012-12-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Elegantly written, with obvious appreciation for fine points of higher mathematics...most notable is [the] author's effort to weave classical probability theory into [a] quantum framework." – The American Mathematical Monthly "This is an excellent volume which will be a valuable companion both for those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students." – Mathematical Reviews An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito's correction formulae for Brownian motion and the Poisson process can be traced to communication relations or, equivalently, the uncertainty principle. Quantum stochastic interpretation enables the possibility of seeing new relationships between fermion and boson fields. Quantum dynamical semigroups as well as classical Markov semigroups are realized through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level.
Book Synopsis Mathematics of Classical and Quantum Physics by : Frederick W. Byron
Download or read book Mathematics of Classical and Quantum Physics written by Frederick W. Byron and published by Courier Corporation. This book was released on 2012-04-26 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Book Synopsis Applications of q-Calculus in Operator Theory by : Ali Aral
Download or read book Applications of q-Calculus in Operator Theory written by Ali Aral and published by Springer Science & Business Media. This book was released on 2013-05-09 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.
Book Synopsis The Theoretical Minimum by : Leonard Susskind
Download or read book The Theoretical Minimum written by Leonard Susskind and published by Basic Books. This book was released on 2014-04-22 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Book Synopsis Mathematics of Quantum Computing by : Wolfgang Scherer
Download or read book Mathematics of Quantum Computing written by Wolfgang Scherer and published by Springer Nature. This book was released on 2019-11-13 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the elementary aspects of quantum computing in a mathematical form. It is intended as core or supplementary reading for physicists, mathematicians, and computer scientists taking a first course on quantum computing. It starts by introducing the basic mathematics required for quantum mechanics, and then goes on to present, in detail, the notions of quantum mechanics, entanglement, quantum gates, and quantum algorithms, of which Shor's factorisation and Grover's search algorithm are discussed extensively. In addition, the algorithms for the Abelian Hidden Subgroup and Discrete Logarithm problems are presented and the latter is used to show how the Bitcoin digital signature may be compromised. It also addresses the problem of error correction as well as giving a detailed exposition of adiabatic quantum computing. The book contains around 140 exercises for the student, covering all of the topics treated, together with an appendix of solutions.
Book Synopsis Quantum Mechanics in Simple Matrix Form by : Thomas F. Jordan
Download or read book Quantum Mechanics in Simple Matrix Form written by Thomas F. Jordan and published by Courier Corporation. This book was released on 2012-05-23 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.
Book Synopsis Mathematical Concepts of Quantum Mechanics by : Stephen J. Gustafson
Download or read book Mathematical Concepts of Quantum Mechanics written by Stephen J. Gustafson and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Book Synopsis Physics and Mathematics of Quantum Many-Body Systems by : Hal Tasaki
Download or read book Physics and Mathematics of Quantum Many-Body Systems written by Hal Tasaki and published by Springer Nature. This book was released on 2020-05-07 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
Book Synopsis Fundamental Mathematical Structures of Quantum Theory by : Valter Moretti
Download or read book Fundamental Mathematical Structures of Quantum Theory written by Valter Moretti and published by Springer. This book was released on 2019-06-20 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Book Synopsis Quantum Mechanics by : Leonard Susskind
Download or read book Quantum Mechanics written by Leonard Susskind and published by Basic Books (AZ). This book was released on 2014-02-25 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Book Synopsis Quantum Theory for Mathematicians by : Brian C. Hall
Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Book Synopsis Introduction to Quantum Mechanics with Applications to Chemistry by : Linus Pauling
Download or read book Introduction to Quantum Mechanics with Applications to Chemistry written by Linus Pauling and published by Courier Corporation. This book was released on 2012-06-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Book Synopsis An Introductory Path to Quantum Theory by : Stephen Bruce Sontz
Download or read book An Introductory Path to Quantum Theory written by Stephen Bruce Sontz and published by Springer Nature. This book was released on 2020-03-16 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 17th century, physical theories have been expressed in the language of mathematical equations. This introduction to quantum theory uses that language to enable the reader to comprehend the notoriously non-intuitive ideas of quantum physics. The mathematical knowledge needed for using this book comes from standard undergraduate mathematics courses and is described in detail in the section Prerequisites. This text is especially aimed at advanced undergraduate and graduate students of mathematics, computer science, engineering and chemistry among other disciplines, provided they have the math background even though lacking preparation in physics. In fact, no previous formal study of physics is assumed.
Book Synopsis Quantum Theory, Groups and Representations by : Peter Woit
Download or read book Quantum Theory, Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.