Handbook of Learning and Approximate Dynamic Programming

Download Handbook of Learning and Approximate Dynamic Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471660545
Total Pages : 670 pages
Book Rating : 4.6/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Learning and Approximate Dynamic Programming by : Jennie Si

Download or read book Handbook of Learning and Approximate Dynamic Programming written by Jennie Si and published by John Wiley & Sons. This book was released on 2004-08-02 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field

Approximate Dynamic Programming

Download Approximate Dynamic Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470182954
Total Pages : 487 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Approximate Dynamic Programming by : Warren B. Powell

Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

LQ Dynamic Optimization and Differential Games

Download LQ Dynamic Optimization and Differential Games PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470015247
Total Pages : 514 pages
Book Rating : 4.0/5 (152 download)

DOWNLOAD NOW!


Book Synopsis LQ Dynamic Optimization and Differential Games by : Jacob Engwerda

Download or read book LQ Dynamic Optimization and Differential Games written by Jacob Engwerda and published by John Wiley & Sons. This book was released on 2005-06-17 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.

Dynamic Optimization

Download Dynamic Optimization PDF Online Free

Author :
Publisher : Prentice Hall
ISBN 13 :
Total Pages : 458 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Optimization by : Arthur Earl Bryson

Download or read book Dynamic Optimization written by Arthur Earl Bryson and published by Prentice Hall. This book was released on 1999 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Dynamic Optimization" takes an applied approach to its subject, offering many examples and solved problems that draw from aerospace, robotics, and mechanics. The abundance of thoroughly tested general algorithms and Matlab codes provide the reader with the practice necessary to master this inherently difficult subject, while the realistic engineering problems and examples keep the material interesting and relevant. FEATURES/BENEFITS Covers dynamic programming, relating it to the calculus of variations and optimal control, and neighboring optimum control (differential dynamic programming), a practical method for nonlinear feedback control. Includes a disk that contains 40 gradient and shooting codes, as well as codes that solve the time-varying Riccati equation (the DYNOPT Toolbox). These codes have been thoroughly tested on hundreds of problems. Contains many realistic examples and problems. Solutions to the examples and problems, as well as the codes that produce the figures, are included on the accompanying disk. Covers dynamic optimization with inequality constraints and singular arcs using inverse dynamic optimization (differential inclusion).

Dynamic Optimization, Second Edition

Download Dynamic Optimization, Second Edition PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486310280
Total Pages : 402 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Optimization, Second Edition by : Morton I. Kamien

Download or read book Dynamic Optimization, Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Dynamic Optimization and Learning

Download Dynamic Optimization and Learning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 60 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Dynamic Optimization and Learning by : Alexandre X. Carvalhi

Download or read book Dynamic Optimization and Learning written by Alexandre X. Carvalhi and published by . This book was released on 2005 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model formulation; A formal analysis of the trade-off between optimization and learning; The general multiperiod problem; Monte Carlo simulation; Random prices and estimation bias.

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control

Download Reinforcement Learning and Approximate Dynamic Programming for Feedback Control PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118453972
Total Pages : 498 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Approximate Dynamic Programming for Feedback Control by : Frank L. Lewis

Download or read book Reinforcement Learning and Approximate Dynamic Programming for Feedback Control written by Frank L. Lewis and published by John Wiley & Sons. This book was released on 2013-01-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.

Simulation-Based Optimization

Download Simulation-Based Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1489974911
Total Pages : 530 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Simulation-Based Optimization by : Abhijit Gosavi

Download or read book Simulation-Based Optimization written by Abhijit Gosavi and published by Springer. This book was released on 2014-10-30 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Download Reinforcement Learning and Dynamic Programming Using Function Approximators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439821097
Total Pages : 280 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining

Download Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319918397
Total Pages : 277 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining by : Hassan AbouEisha

Download or read book Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining written by Hassan AbouEisha and published by Springer. This book was released on 2018-05-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic programming is an efficient technique for solving optimization problems. It is based on breaking the initial problem down into simpler ones and solving these sub-problems, beginning with the simplest ones. A conventional dynamic programming algorithm returns an optimal object from a given set of objects. This book develops extensions of dynamic programming, enabling us to (i) describe the set of objects under consideration; (ii) perform a multi-stage optimization of objects relative to different criteria; (iii) count the number of optimal objects; (iv) find the set of Pareto optimal points for bi-criteria optimization problems; and (v) to study relationships between two criteria. It considers various applications, including optimization of decision trees and decision rule systems as algorithms for problem solving, as ways for knowledge representation, and as classifiers; optimization of element partition trees for rectangular meshes, which are used in finite element methods for solving PDEs; and multi-stage optimization for such classic combinatorial optimization problems as matrix chain multiplication, binary search trees, global sequence alignment, and shortest paths. The results presented are useful for researchers in combinatorial optimization, data mining, knowledge discovery, machine learning, and finite element methods, especially those working in rough set theory, test theory, logical analysis of data, and PDE solvers. This book can be used as the basis for graduate courses.

Handbook of Test Problems in Local and Global Optimization

Download Handbook of Test Problems in Local and Global Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475730403
Total Pages : 447 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Test Problems in Local and Global Optimization by : Christodoulos A. Floudas

Download or read book Handbook of Test Problems in Local and Global Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.

Elements of Dynamic Optimization

Download Elements of Dynamic Optimization PDF Online Free

Author :
Publisher :
ISBN 13 : 9781577660965
Total Pages : 0 pages
Book Rating : 4.6/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Elements of Dynamic Optimization by : Alpha C. Chiang

Download or read book Elements of Dynamic Optimization written by Alpha C. Chiang and published by . This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTRODUCTION 1.

Applied Intertemporal Optimization

Download Applied Intertemporal Optimization PDF Online Free

Author :
Publisher : Klaus Wälde
ISBN 13 : 3000324283
Total Pages : 332 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Applied Intertemporal Optimization by : Klaus Wälde

Download or read book Applied Intertemporal Optimization written by Klaus Wälde and published by Klaus Wälde. This book was released on 2012 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dynamic Programming for Coding Interviews

Download Dynamic Programming for Coding Interviews PDF Online Free

Author :
Publisher : Notion Press
ISBN 13 : 194655670X
Total Pages : 168 pages
Book Rating : 4.9/5 (465 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Programming for Coding Interviews by : Meenakshi

Download or read book Dynamic Programming for Coding Interviews written by Meenakshi and published by Notion Press. This book was released on 2017-01-18 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: I wanted to compute 80th term of the Fibonacci series. I wrote the rampant recursive function, int fib(int n){ return (1==n || 2==n) ? 1 : fib(n-1) + fib(n-2); } and waited for the result. I wait… and wait… and wait… With an 8GB RAM and an Intel i5 CPU, why is it taking so long? I terminated the process and tried computing the 40th term. It took about a second. I put a check and was shocked to find that the above recursive function was called 204,668,309 times while computing the 40th term. More than 200 million times? Is it reporting function calls or scam of some government? The Dynamic Programming solution computes 100th Fibonacci term in less than fraction of a second, with a single function call, taking linear time and constant extra memory. A recursive solution, usually, neither pass all test cases in a coding competition, nor does it impress the interviewer in an interview of company like Google, Microsoft, etc. The most difficult questions asked in competitions and interviews, are from dynamic programming. This book takes Dynamic Programming head-on. It first explain the concepts with simple examples and then deep dives into complex DP problems.

Algorithms for Reinforcement Learning

Download Algorithms for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015517
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Optimal Control Theory and Static Optimization in Economics

Download Optimal Control Theory and Static Optimization in Economics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521337465
Total Pages : 372 pages
Book Rating : 4.3/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Optimal Control Theory and Static Optimization in Economics by : Daniel Léonard

Download or read book Optimal Control Theory and Static Optimization in Economics written by Daniel Léonard and published by Cambridge University Press. This book was released on 1992-01-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.

Cellular Learning Automata: Theory and Applications

Download Cellular Learning Automata: Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030531414
Total Pages : 377 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Cellular Learning Automata: Theory and Applications by : Reza Vafashoar

Download or read book Cellular Learning Automata: Theory and Applications written by Reza Vafashoar and published by Springer Nature. This book was released on 2020-07-24 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.