Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Dynamic Optimization
Download Dynamic Optimization full books in PDF, epub, and Kindle. Read online Dynamic Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Dynamic Optimization, Second Edition by : Morton I. Kamien
Download or read book Dynamic Optimization, Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
Book Synopsis Dynamic Optimization by : Karl Hinderer
Download or read book Dynamic Optimization written by Karl Hinderer and published by Springer. This book was released on 2017-01-12 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Book Synopsis Elements of Dynamic Optimization by : Alpha C. Chiang
Download or read book Elements of Dynamic Optimization written by Alpha C. Chiang and published by . This book was released on 2000 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: INTRODUCTION 1.
Book Synopsis LQ Dynamic Optimization and Differential Games by : Jacob Engwerda
Download or read book LQ Dynamic Optimization and Differential Games written by Jacob Engwerda and published by John Wiley & Sons. This book was released on 2005-06-17 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
Book Synopsis Optimization of Dynamic Systems by : S. K. Agrawal
Download or read book Optimization of Dynamic Systems written by S. K. Agrawal and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook deals with optimization of dynamic systems. The motivation for undertaking this task is as follows: There is an ever increasing need to produce more efficient, accurate, and lightweight mechanical and electromechanical de vices. Thus, the typical graduating B.S. and M.S. candidate is required to have some familiarity with techniques for improving the performance of dynamic systems. Unfortunately, existing texts dealing with system improvement via optimization remain inaccessible to many of these students and practicing en gineers. It is our goal to alleviate this difficulty by presenting to seniors and beginning graduate students practical efficient techniques for solving engineer ing system optimization problems. The text has been used in optimal control and dynamic system optimization courses at the University of Deleware, the University of Washington and Ohio University over the past four years. The text covers the following material in a straightforward detailed manner: • Static Optimization: The problem of optimizing a function that depends on static variables (i.e., parameters) is considered. Problems with equality and inequality constraints are addressed. • Numerical Methods: Static Optimization: Numerical algorithms for the solution of static optimization problems are presented here. The methods presented can accommodate both the unconstrained and constrained static optimization problems. • Calculus of Variation: The necessary and sufficient conditions for the ex tremum of functionals are presented. Both the fixed final time and free final time problems are considered.
Book Synopsis Evolutionary Optimization in Dynamic Environments by : Jürgen Branke
Download or read book Evolutionary Optimization in Dynamic Environments written by Jürgen Branke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to continuously and efficiently adapt a solution to a changing environment, find a good trade-off between solution quality and adaptation cost, find robust solutions whose quality is insensitive to changes in the environment, find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems. The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.
Book Synopsis Evolutionary Computation for Dynamic Optimization Problems by : Shengxiang Yang
Download or read book Evolutionary Computation for Dynamic Optimization Problems written by Shengxiang Yang and published by Springer. This book was released on 2013-11-18 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.
Book Synopsis Dynamic Optimization and Differential Games by : Terry L. Friesz
Download or read book Dynamic Optimization and Differential Games written by Terry L. Friesz and published by Springer Science & Business Media. This book was released on 2010-08-20 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide by those whose work involves the theoretical aspects of dynamic optimization and differential games.
Book Synopsis Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining by : Hassan AbouEisha
Download or read book Extensions of Dynamic Programming for Combinatorial Optimization and Data Mining written by Hassan AbouEisha and published by Springer. This book was released on 2018-05-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic programming is an efficient technique for solving optimization problems. It is based on breaking the initial problem down into simpler ones and solving these sub-problems, beginning with the simplest ones. A conventional dynamic programming algorithm returns an optimal object from a given set of objects. This book develops extensions of dynamic programming, enabling us to (i) describe the set of objects under consideration; (ii) perform a multi-stage optimization of objects relative to different criteria; (iii) count the number of optimal objects; (iv) find the set of Pareto optimal points for bi-criteria optimization problems; and (v) to study relationships between two criteria. It considers various applications, including optimization of decision trees and decision rule systems as algorithms for problem solving, as ways for knowledge representation, and as classifiers; optimization of element partition trees for rectangular meshes, which are used in finite element methods for solving PDEs; and multi-stage optimization for such classic combinatorial optimization problems as matrix chain multiplication, binary search trees, global sequence alignment, and shortest paths. The results presented are useful for researchers in combinatorial optimization, data mining, knowledge discovery, machine learning, and finite element methods, especially those working in rough set theory, test theory, logical analysis of data, and PDE solvers. This book can be used as the basis for graduate courses.
Book Synopsis Anticipatory Optimization for Dynamic Decision Making by : Stephan Meisel
Download or read book Anticipatory Optimization for Dynamic Decision Making written by Stephan Meisel and published by Springer Science & Business Media. This book was released on 2011-06-23 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The availability of today’s online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process. However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems. This book has serves two major purposes: ‐ It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. It fully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making. ‐ It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community.
Book Synopsis Optimal Control Theory and Static Optimization in Economics by : Daniel Léonard
Download or read book Optimal Control Theory and Static Optimization in Economics written by Daniel Léonard and published by Cambridge University Press. This book was released on 1992-01-31 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is a technique being used increasingly by academic economists to study problems involving optimal decisions in a multi-period framework. This textbook is designed to make the difficult subject of optimal control theory easily accessible to economists while at the same time maintaining rigour. Economic intuitions are emphasized, and examples and problem sets covering a wide range of applications in economics are provided to assist in the learning process. Theorems are clearly stated and their proofs are carefully explained. The development of the text is gradual and fully integrated, beginning with simple formulations and progressing to advanced topics such as control parameters, jumps in state variables, and bounded state space. For greater economy and elegance, optimal control theory is introduced directly, without recourse to the calculus of variations. The connection with the latter and with dynamic programming is explained in a separate chapter. A second purpose of the book is to draw the parallel between optimal control theory and static optimization. Chapter 1 provides an extensive treatment of constrained and unconstrained maximization, with emphasis on economic insight and applications. Starting from basic concepts, it derives and explains important results, including the envelope theorem and the method of comparative statics. This chapter may be used for a course in static optimization. The book is largely self-contained. No previous knowledge of differential equations is required.
Book Synopsis Applied Dynamic Programming by : Richard E. Bellman
Download or read book Applied Dynamic Programming written by Richard E. Bellman and published by Princeton University Press. This book was released on 2015-12-08 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive study of dynamic programming applied to numerical solution of optimization problems. It will interest aerodynamic, control, and industrial engineers, numerical analysts, and computer specialists, applied mathematicians, economists, and operations and systems analysts. Originally published in 1962. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis Applied Dynamic Programming for Optimization of Dynamical Systems by : Rush D. Robinett III
Download or read book Applied Dynamic Programming for Optimization of Dynamical Systems written by Rush D. Robinett III and published by SIAM. This book was released on 2005-01-01 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.
Book Synopsis Optimization and Control of Dynamic Systems by : Henryk Górecki
Download or read book Optimization and Control of Dynamic Systems written by Henryk Górecki and published by Springer. This book was released on 2017-07-26 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive presentation of optimization and polyoptimization methods. The examples included are taken from various domains: mechanics, electrical engineering, economy, informatics, and automatic control, making the book especially attractive. With the motto “from general abstraction to practical examples,” it presents the theory and applications of optimization step by step, from the function of one variable and functions of many variables with constraints, to infinite dimensional problems (calculus of variations), a continuation of which are optimization methods of dynamical systems, that is, dynamic programming and the maximum principle, and finishing with polyoptimization methods. It includes numerous practical examples, e.g., optimization of hierarchical systems, optimization of time-delay systems, rocket stabilization modeled by balancing a stick on a finger, a simplified version of the journey to the moon, optimization of hybrid systems and of the electrical long transmission line, analytical determination of extremal errors in dynamical systems of the rth order, multicriteria optimization with safety margins (the skeleton method), and ending with a dynamic model of bicycle. The book is aimed at readers who wish to study modern optimization methods, from problem formulation and proofs to practical applications illustrated by inspiring concrete examples.
Book Synopsis Approximate Dynamic Programming for Dynamic Vehicle Routing by : Marlin Wolf Ulmer
Download or read book Approximate Dynamic Programming for Dynamic Vehicle Routing written by Marlin Wolf Ulmer and published by Springer. This book was released on 2017-04-19 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward overview for every researcher interested in stochastic dynamic vehicle routing problems (SDVRPs). The book is written for both the applied researcher looking for suitable solution approaches for particular problems as well as for the theoretical researcher looking for effective and efficient methods of stochastic dynamic optimization and approximate dynamic programming (ADP). To this end, the book contains two parts. In the first part, the general methodology required for modeling and approaching SDVRPs is presented. It presents adapted and new, general anticipatory methods of ADP tailored to the needs of dynamic vehicle routing. Since stochastic dynamic optimization is often complex and may not always be intuitive on first glance, the author accompanies the ADP-methodology with illustrative examples from the field of SDVRPs. The second part of this book then depicts the application of the theory to a specific SDVRP. The process starts from the real-world application. The author describes a SDVRP with stochastic customer requests often addressed in the literature, and then shows in detail how this problem can be modeled as a Markov decision process and presents several anticipatory solution approaches based on ADP. In an extensive computational study, he shows the advantages of the presented approaches compared to conventional heuristics. To allow deep insights in the functionality of ADP, he presents a comprehensive analysis of the ADP approaches.
Book Synopsis Introduction to Stochastic Dynamic Programming by : Sheldon M. Ross
Download or read book Introduction to Stochastic Dynamic Programming written by Sheldon M. Ross and published by Academic Press. This book was released on 2014-07-10 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.
Book Synopsis Dynamic Optimization by : Arthur Earl Bryson
Download or read book Dynamic Optimization written by Arthur Earl Bryson and published by Prentice Hall. This book was released on 1999 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Dynamic Optimization" takes an applied approach to its subject, offering many examples and solved problems that draw from aerospace, robotics, and mechanics. The abundance of thoroughly tested general algorithms and Matlab codes provide the reader with the practice necessary to master this inherently difficult subject, while the realistic engineering problems and examples keep the material interesting and relevant. FEATURES/BENEFITS Covers dynamic programming, relating it to the calculus of variations and optimal control, and neighboring optimum control (differential dynamic programming), a practical method for nonlinear feedback control. Includes a disk that contains 40 gradient and shooting codes, as well as codes that solve the time-varying Riccati equation (the DYNOPT Toolbox). These codes have been thoroughly tested on hundreds of problems. Contains many realistic examples and problems. Solutions to the examples and problems, as well as the codes that produce the figures, are included on the accompanying disk. Covers dynamic optimization with inequality constraints and singular arcs using inverse dynamic optimization (differential inclusion).