Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Convex Analysis And Measurable Multifications
Download Convex Analysis And Measurable Multifications full books in PDF, epub, and Kindle. Read online Convex Analysis And Measurable Multifications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :R. Tyrrell Rockafellar Publisher :Springer Science & Business Media ISBN 13 :3642024319 Total Pages :747 pages Book Rating :4.6/5 (42 download)
Book Synopsis Variational Analysis by : R. Tyrrell Rockafellar
Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke
Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Author :Halsey Royden Publisher :Pearson Modern Classics for Advanced Mathematics Series ISBN 13 :9780134689494 Total Pages :0 pages Book Rating :4.6/5 (894 download)
Book Synopsis Real Analysis (Classic Version) by : Halsey Royden
Download or read book Real Analysis (Classic Version) written by Halsey Royden and published by Pearson Modern Classics for Advanced Mathematics Series. This book was released on 2017-02-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.
Book Synopsis Convex Functional Analysis by : Andrew J. Kurdila
Download or read book Convex Functional Analysis written by Andrew J. Kurdila and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.
Book Synopsis Measure, Integration & Real Analysis by : Sheldon Axler
Download or read book Measure, Integration & Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Book Synopsis An Introduction to Measure Theory by : Terence Tao
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Book Synopsis Nonlinear and Convex Analysis in Economic Theory by : Toru Maruyama
Download or read book Nonlinear and Convex Analysis in Economic Theory written by Toru Maruyama and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected in this volume are contributions to T.I.Tech./K.E.S. Conference on Nonlinear and Convex Analysis in Economic Theory, which was held at Keio University, July 2-4, 1993. The conference was organized by Tokyo Institute of Technology (T. I. Tech.) and the Keio Economic Society (K. E. S.) , and supported by Nihon Keizai Shimbun Inc .. A lot of economic problems can be formulated as constrained optimiza tions and equilibrations of their solutions. Nonlinear-convex analysis has been supplying economists with indispensable mathematical machineries for these problems arising in economic theory. Conversely, mathematicians working in this discipline of analysis have been stimulated by various mathematical difficulties raised by economic the ories. Although our special emphasis was laid upon "nonlinearity" and "con vexity" in relation with economic theories, we also incorporated stochastic aspects of financial economics in our project taking account of the remark able rapid growth of this discipline during the last decade. The conference was designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who were seeking for effective mathematical weapons for their researches. Thirty invited talks (six of them were plenary talks) given at the conf- ence were roughly classified under the following six headings : 1) Nonlinear Dynamical Systems and Business Fluctuations, . 2) Fixed Point Theory, 3) Convex Analysis and Optimization, 4) Eigenvalue of Positive Operators, 5) Stochastic Analysis and Financial Market, 6) General Equilibrium Analysis.
Book Synopsis Convex Optimization & Euclidean Distance Geometry by : Jon Dattorro
Download or read book Convex Optimization & Euclidean Distance Geometry written by Jon Dattorro and published by Meboo Publishing USA. This book was released on 2005 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.
Download or read book National Union Catalog written by and published by . This book was released on 1978 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Analysis II by : Revaz V. Gamkrelidze
Download or read book Analysis II written by Revaz V. Gamkrelidze and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development.
Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Book Synopsis Counterexamples in Analysis by : Bernard R. Gelbaum
Download or read book Counterexamples in Analysis written by Bernard R. Gelbaum and published by Courier Corporation. This book was released on 2012-07-12 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: These counterexamples deal mostly with the part of analysis known as "real variables." Covers the real number system, functions and limits, differentiation, Riemann integration, sequences, infinite series, functions of 2 variables, plane sets, more. 1962 edition.
Book Synopsis Subject Catalog by : Library of Congress
Download or read book Subject Catalog written by Library of Congress and published by . This book was released on 1977 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Measure Theory And Functional Analysis by : Nik Weaver
Download or read book Measure Theory And Functional Analysis written by Nik Weaver and published by World Scientific Publishing Company. This book was released on 2013-07-23 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to measure theory and functional analysis suitable for a beginning graduate course, and is based on notes the author had developed over several years of teaching such a course. It is unique in placing special emphasis on the separable setting, which allows for a simultaneously more detailed and more elementary exposition, and for its rapid progression into advanced topics in the spectral theory of families of self-adjoint operators. The author's notion of measurable Hilbert bundles is used to give the spectral theorem a particularly elegant formulation not to be found in other textbooks on the subject.
Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Book Synopsis Limit Analysis of Solids and Structures by : Jacov A. Kamenjarzh
Download or read book Limit Analysis of Solids and Structures written by Jacov A. Kamenjarzh and published by CRC Press. This book was released on 1996-07-24 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solids subjected to sufficiently large loads undergo plastic strain that does not vanish after unloading. Limit analysis is used to find out whether a given loading is safe against capacity loss due to intensive plastic deformation. Over the past 25 years, the theory and methods of limit analysis have undergone substantial development. This book gives a clear and complete presentation of the state of the art of limit analysis, including:
Book Synopsis Measure, Integral and Probability by : Marek Capinski
Download or read book Measure, Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.