Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Algorithms And Fairness
Download Algorithms And Fairness full books in PDF, epub, and Kindle. Read online Algorithms And Fairness ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Ethical Algorithm by : Michael Kearns
Download or read book The Ethical Algorithm written by Michael Kearns and published by . This book was released on 2020 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Book Synopsis Big Data and Social Science by : Ian Foster
Download or read book Big Data and Social Science written by Ian Foster and published by CRC Press. This book was released on 2016-08-10 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.
Book Synopsis Practical Fairness by : Aileen Nielsen
Download or read book Practical Fairness written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2020-12-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fairness is an increasingly important topic as machine learning and AI more generally take over the world. While this is an active area of research, many realistic best practices are emerging at all steps along the data pipeline, from data selection and preprocessing to blackbox model audits. This book will guide you through the technical, legal, and ethical aspects of making your code fair and secure while highlighting cutting edge academic research and ongoing legal developments related to fairness and algorithms. There is mounting evidence that the widespread deployment of machine learning and artificial intelligence in business and government is reproducing the same biases we are trying to fight in the real world. For this reason, fairness is an increasingly important consideration for the data scientist. Yet discussions of what fairness means in terms of actual code are few and far between. This code will show you how to code fairly as well as cover basic concerns related to data security and privacy from a fairness perspective.
Book Synopsis How Conditional Cash Transfers Work by : Pablo Ibarrarán
Download or read book How Conditional Cash Transfers Work written by Pablo Ibarrarán and published by . This book was released on 2017-01-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A First Course in Machine Learning by : Simon Rogers
Download or read book A First Course in Machine Learning written by Simon Rogers and published by CRC Press. This book was released on 2016-10-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/"
Book Synopsis Responsible Data Science by : Peter C. Bruce
Download or read book Responsible Data Science written by Peter C. Bruce and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the most serious prevalent ethical issues in data science with this insightful new resource The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair. Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to: Improve model transparency, even for black box models Diagnose bias and unfairness within models using multiple metrics Audit projects to ensure fairness and minimize the possibility of unintended harm Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.
Book Synopsis AI and Machine Learning for Coders by : Laurence Moroney
Download or read book AI and Machine Learning for Coders written by Laurence Moroney and published by O'Reilly Media. This book was released on 2020-10-01 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you're looking to make a career move from programmer to AI specialist, this is the ideal place to start. Based on Laurence Moroney's extremely successful AI courses, this introductory book provides a hands-on, code-first approach to help you build confidence while you learn key topics. You'll understand how to implement the most common scenarios in machine learning, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. Most books on machine learning begin with a daunting amount of advanced math. This guide is built on practical lessons that let you work directly with the code. You'll learn: How to build models with TensorFlow using skills that employers desire The basics of machine learning by working with code samples How to implement computer vision, including feature detection in images How to use NLP to tokenize and sequence words and sentences Methods for embedding models in Android and iOS How to serve models over the web and in the cloud with TensorFlow Serving
Book Synopsis Cake-Cutting Algorithms by : Jack Robertson
Download or read book Cake-Cutting Algorithms written by Jack Robertson and published by CRC Press. This book was released on 1998-07-15 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenge of dividing an asset fairly, from cakes to more important properties, is of great practical importance in many situations. Since the famous Polish school of mathematicians (Steinhaus, Banach, and Knaster) introduced and described algorithms for the fair division problem in the 1940s, the concept has been widely popularized. This book
Book Synopsis The Algorithmic Society by : Marc Schuilenburg
Download or read book The Algorithmic Society written by Marc Schuilenburg and published by Routledge. This book was released on 2020-12-29 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in an algorithmic society. Algorithms have become the main mediator through which power is enacted in our society. This book brings together three academic fields – Public Administration, Criminal Justice and Urban Governance – into a single conceptual framework, and offers a broad cultural-political analysis, addressing critical and ethical issues of algorithms. Governments are increasingly turning towards algorithms to predict criminality, deliver public services, allocate resources, and calculate recidivism rates. Mind-boggling amounts of data regarding our daily actions are analysed to make decisions that manage, control, and nudge our behaviour in everyday life. The contributions in this book offer a broad analysis of the mechanisms and social implications of algorithmic governance. Reporting from the cutting edge of scientific research, the result is illuminating and useful for understanding the relations between algorithms and power.Topics covered include: Algorithmic governmentality Transparency and accountability Fairness in criminal justice and predictive policing Principles of good digital administration Artificial Intelligence (AI) in the smart city This book is essential reading for students and scholars of Sociology, Criminology, Public Administration, Political Sciences, and Cultural Theory interested in the integration of algorithms into the governance of society.
Book Synopsis Finite Mixture Models by : Geoffrey McLachlan
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Book Synopsis An Introduction to Ethics in Robotics and AI by : Christoph Bartneck
Download or read book An Introduction to Ethics in Robotics and AI written by Christoph Bartneck and published by Springer Nature. This book was released on 2020-08-11 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book introduces the reader to the foundations of AI and ethics. It discusses issues of trust, responsibility, liability, privacy and risk. It focuses on the interaction between people and the AI systems and Robotics they use. Designed to be accessible for a broad audience, reading this book does not require prerequisite technical, legal or philosophical expertise. Throughout, the authors use examples to illustrate the issues at hand and conclude the book with a discussion on the application areas of AI and Robotics, in particular autonomous vehicles, automatic weapon systems and biased algorithms. A list of questions and further readings is also included for students willing to explore the topic further.
Book Synopsis Weapons of Math Destruction by : Cathy O'Neil
Download or read book Weapons of Math Destruction written by Cathy O'Neil and published by Crown Publishing Group (NY). This book was released on 2016 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A former Wall Street quantitative analyst sounds an alarm on mathematical modeling, a pervasive new force in society that threatens to undermine democracy and widen inequality,"--NoveList.
Book Synopsis Algorithms and Autonomy by : Alan Rubel
Download or read book Algorithms and Autonomy written by Alan Rubel and published by Cambridge University Press. This book was released on 2021-05-20 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines how algorithms in criminal justice, education, housing, elections and beyond affect autonomy, freedom, and democracy. This title is also available as Open Access on Cambridge Core.
Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Book Synopsis Responsible AI and Analytics for an Ethical and Inclusive Digitized Society by : Denis Dennehy
Download or read book Responsible AI and Analytics for an Ethical and Inclusive Digitized Society written by Denis Dennehy and published by Springer Nature. This book was released on 2021-08-25 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the proceedings of the 20th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2021, held in Galway, Ireland, in September 2021.* The total of 57 full and 8 short papers presented in these volumes were carefully reviewed and selected from 141 submissions. The papers are organized in the following topical sections: AI for Digital Transformation and Public Good; AI & Analytics Decision Making; AI Philosophy, Ethics & Governance; Privacy & Transparency in a Digitized Society; Digital Enabled Sustainable Organizations and Societies; Digital Technologies and Organizational Capabilities; Digitized Supply Chains; Customer Behavior and E-business; Blockchain; Information Systems Development; Social Media & Analytics; and Teaching & Learning. *The conference was held virtually due to the COVID-19 pandemic.
Book Synopsis Design Justice by : Sasha Costanza-Chock
Download or read book Design Justice written by Sasha Costanza-Chock and published by MIT Press. This book was released on 2020-03-03 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of how design might be led by marginalized communities, dismantle structural inequality, and advance collective liberation and ecological survival. What is the relationship between design, power, and social justice? “Design justice” is an approach to design that is led by marginalized communities and that aims expilcitly to challenge, rather than reproduce, structural inequalities. It has emerged from a growing community of designers in various fields who work closely with social movements and community-based organizations around the world. This book explores the theory and practice of design justice, demonstrates how universalist design principles and practices erase certain groups of people—specifically, those who are intersectionally disadvantaged or multiply burdened under the matrix of domination (white supremacist heteropatriarchy, ableism, capitalism, and settler colonialism)—and invites readers to “build a better world, a world where many worlds fit; linked worlds of collective liberation and ecological sustainability.” Along the way, the book documents a multitude of real-world community-led design practices, each grounded in a particular social movement. Design Justice goes beyond recent calls for design for good, user-centered design, and employment diversity in the technology and design professions; it connects design to larger struggles for collective liberation and ecological survival.
Book Synopsis Algorithms of Oppression by : Safiya Umoja Noble
Download or read book Algorithms of Oppression written by Safiya Umoja Noble and published by NYU Press. This book was released on 2018-02-20 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acknowledgments -- Introduction: the power of algorithms -- A society, searching -- Searching for Black girls -- Searching for people and communities -- Searching for protections from search engines -- The future of knowledge in the public -- The future of information culture -- Conclusion: algorithms of oppression -- Epilogue -- Notes -- Bibliography -- Index -- About the author