Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm
Download Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm full books in PDF, epub, and Kindle. Read online Value Distribution Theory Of The Gauss Map Of Minimal Surfaces In Rm ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm by : Hirotaka Fujimoto
Download or read book Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm written by Hirotaka Fujimoto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.
Book Synopsis Minimal Surfaces through Nevanlinna Theory by : Min Ru
Download or read book Minimal Surfaces through Nevanlinna Theory written by Min Ru and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-05-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Minimal Surfaces by : Ulrich Dierkes
Download or read book Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.
Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.
Book Synopsis Differential Geometry, Valencia 2001 by : Olga Gil-Medrano
Download or read book Differential Geometry, Valencia 2001 written by Olga Gil-Medrano and published by World Scientific. This book was released on 2002 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the proceedings of a conference on differential geometry held in honour of the 60th birthday of A M Naveira. The meeting brought together distinguished researchers from a variety of areas in Riemannian geometry. The topics include: geometry of the curvature tensor, variational problems for geometric functionals such as Willmore-Chen tension, volume and energy of foliations and vector fields, and energy of maps. Many papers concern special submanifolds in Riemannian and Lorentzian manifolds, such as those with constant mean (scalar, Gauss, etc.) curvature and those with finite total curvature.
Book Synopsis Advances in Non-Archimedean Analysis and Applications by : W. A. Zúñiga-Galindo
Download or read book Advances in Non-Archimedean Analysis and Applications written by W. A. Zúñiga-Galindo and published by Springer Nature. This book was released on 2021-12-02 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role – a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems – for instance, proteins – asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
Book Synopsis Value Distribution Theory Related to Number Theory by : Pei-Chu Hu
Download or read book Value Distribution Theory Related to Number Theory written by Pei-Chu Hu and published by Springer Science & Business Media. This book was released on 2006-10-06 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.
Book Synopsis Tropical Value Distribution Theory And Ultra-discrete Equations by : Risto Korhonen
Download or read book Tropical Value Distribution Theory And Ultra-discrete Equations written by Risto Korhonen and published by World Scientific. This book was released on 2015-03-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook-type presentation of tropical value distribution theory. It provides a detailed introduction of the tropical version of the Nevanlinna theory, describing growth and value distribution analysis of continuous, piecewise linear functions on the real axis. The book also includes applications of this theory to ultra-discrete equations. Three appendices are given to compare the contents of the theory with the classical counterparts in complex analysis.Detailed presentation of the proofs makes the book accessible for lecture courses and independent studies at the graduate and post-doctoral level.
Book Synopsis Nevanlinna Theory in Several Complex Variables and Diophantine Approximation by : Junjiro Noguchi
Download or read book Nevanlinna Theory in Several Complex Variables and Diophantine Approximation written by Junjiro Noguchi and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.
Book Synopsis Distribution Theory of Algebraic Numbers by : Pei-Chu Hu
Download or read book Distribution Theory of Algebraic Numbers written by Pei-Chu Hu and published by Walter de Gruyter. This book was released on 2008-12-10 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions • Algebraic numbers • Algebraic geometry • Height functions • The abc-conjecture • Roth's theorem • Subspace theorems • Vojta's conjectures • L-functions.
Book Synopsis Ball and Surface Arithmetics by : Rolf-Peter Holzapfel
Download or read book Ball and Surface Arithmetics written by Rolf-Peter Holzapfel and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bei höherdimensionalen komplexen Mannigfaltigkeiten stellt die Riemann-Roch-Theorie die grundlegende Verbindung von analytischen bzw. algebraischen zu topologischen Eigenschaften her. Dieses Buch befaßt sich mit Mannigfaltigkeiten der komplexen Dimension 2, d. h. mit komplexen Flächen. Hauptziel der Monographie ist es, neue rationale diskrete Invarianten (Höhen) in die Theorie komplexer Flächen explizit einzuführen und ihre Anwendbarkeit auf konkrete aktuelle Probleme darzustellen.Als erste unmittelbare Anwendung erhält man explizit und ganz allgemein Formeln vom Hurwitz-Typ endlicher Flächenüberlagerungen für die vier klassischen Invarianten, die auf andere Weise bisher nur in Spezialfällen zugänglich waren. Ein weiteres Anwendungsgebiet ist die Theorie der Picardschen Modulflächen: Neue Resultate werden beschrieben. Letztendlich kann im letzten Kapitel eine Ergänzung des bekannten Satzes von Bogomolov-Miyaoka-Yau mit Hilfe der Höhentheorie gezeigt werden. The monograph presents basically an arithmetic theory of orbital surfaces with cusp singularities. As main invariants orbital hights are introduced, not only for the surfaces but also for the components of orbital cycles. These invariants are rational numbers with nice functorial properties allowing precise formulas of Hurwitz type and a fine intersection theory for orbital cycles. For ball quotient surfaces they appear as volumes of fundamental domains. In the special case of Picard modular surfaces they are discovered by special value of Dirichlet L-series or higher Bernoulli numbers. As a central point of the monograph a general Proportionality Theorem in terms of orbital hights is proved. It yields a strong criterion to decide effectively whether a surface with given cycle supports a ball quotient structure being Kaehler-Einstein with negative constant holomorphic sectional curvature outside of this cycle. The theory is applied to the classification of Picard modular surfaces and to surfaces geography.
Book Synopsis Unicity of Meromorphic Mappings by : Pei-Chu Hu
Download or read book Unicity of Meromorphic Mappings written by Pei-Chu Hu and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna's value distribution theory, which can be derived from the well known Poisson-Jensen for mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) - a = O. In the 1920s as an application of the celebrated Nevanlinna's value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func tions I, 9 and five distinctive values ai (i = 1,2,3,4,5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1,2,3,4,5, then 1 = g. Fur 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1,2,3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1,2,3, then 1 = g.
Book Synopsis Gauss Maps and Moduli Spaces of Minimal Surfaces in Euclidean Spaces by : Xiaokang Mo
Download or read book Gauss Maps and Moduli Spaces of Minimal Surfaces in Euclidean Spaces written by Xiaokang Mo and published by . This book was released on 1990 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hypergeometric Functions, My Love by : Masaaki Yoshida
Download or read book Hypergeometric Functions, My Love written by Masaaki Yoshida and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical story - of the hypergeometric functions, the configuration space of 4 points on the projective line, elliptic curves, elliptic modular functions and the theta functions - now evolves, in this book, to the story of hypergeometric funktions in 4 variables, the configuration space of 6 points in the projective plane, K3 surfaces, theta functions in 4 variables. This modern theory has been established by the author and his collaborators in the 1990's; further development to different aspects is expected. It leads the reader to a fascinating 4-dimensional world. The author tells the story casually and visually in a plain language, starting form elementary level such as equivalence relations, the exponential function, ... Undergraduate students should be able to enjoy the text.
Book Synopsis Algebraic Geometry and its Applications by : Alexander Tikhomirov
Download or read book Algebraic Geometry and its Applications written by Alexander Tikhomirov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 18 papers at the Algebraic Geometry Conference, Yaroslavl', August 10-14, 1992. These conferences in algebraic geometry have a great tradition in Russia and are helt since 1979 in Yaroslavl' every second year. The present conference, the eighth one, was the first in which several foreign mathematicians participated. From the Russian side, there was a large group of specialists in algebraic geometry and related fields (invariant theory, topology of manifolds, theory of categories, mathematical physics etc.). Lectures on modern directions in algebraic geometry, such as the theory of exceptional bundles and helices on algebraic varieties, moduli of vector bundles on algebraic surfaces with applications to Donaldson's theory, geometry of Hilbert schemes of points, twistor spaces and applications to string theory, and more traditional areas, such as birational geometry of manifolds, adjunction theory, Hodge theory, problems of rationality in the invariant theory, topology of complex algebraic varieties, and others are contained in this volume.
Book Synopsis Lie Group Actions in Complex Analysis by : Dimitrij Akhiezer
Download or read book Lie Group Actions in Complex Analysis written by Dimitrij Akhiezer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topic of this book is the sudy of the interaction between two major subjects of modern mathematics, namely, the theory of Lie groups with its specific methods and ways of thinking on the one hand and complex analysis with all its analytic, algebraic and geometric aspects. More specifically, the author concentrates on the double role of Lie groups in complex analysis, namely, as groups of biholomorphic self-made of certain complex analytic objects on the one hand and as a special class of complex manifolds with an additional strong structure on the other hand. The book starts from the basics of this subject and introduces the reader into many fields of recent research.
Book Synopsis A History of Complex Dynamics by : Daniel S. Alexander
Download or read book A History of Complex Dynamics written by Daniel S. Alexander and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contemporary study of complex dynamics, which has flourished so much in recent years, is based largely upon work by G. Julia (1918) and P. Fatou (1919/20). The goal of this book is to analyze this work from an historical perspective and show in detail, how it grew out of a corpus regarding the iteration of complex analytic functions. This began with investigations by E. Schröder (1870/71) which he made, when he studied Newton's method. In the 1880's, Gabriel Koenigs fashioned this study into a rigorous body of work and, thereby, influenced a lot the subsequent development. But only, when Fatou and Julia applied set theory as well as Paul Montel's theory of normal families, it was possible to develop a global approach to the iteration of rational maps. This book shows, how this intriguing piece of modern mathematics became reality.