A Tutorial on Thompson Sampling

Download A Tutorial on Thompson Sampling PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680834710
Total Pages : pages
Book Rating : 4.8/5 (347 download)

DOWNLOAD NOW!


Book Synopsis A Tutorial on Thompson Sampling by : Daniel J. Russo

Download or read book A Tutorial on Thompson Sampling written by Daniel J. Russo and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this tutorial is to explain when, why, and how to apply Thompson sampling.

Bandit Algorithms

Download Bandit Algorithms PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108486827
Total Pages : 537 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Bandit Algorithms by : Tor Lattimore

Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.

Introduction to Multi-Armed Bandits

Download Introduction to Multi-Armed Bandits PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680836202
Total Pages : 306 pages
Book Rating : 4.8/5 (362 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Multi-Armed Bandits by : Aleksandrs Slivkins

Download or read book Introduction to Multi-Armed Bandits written by Aleksandrs Slivkins and published by . This book was released on 2019-10-31 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems

Download Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems PDF Online Free

Author :
Publisher : Now Pub
ISBN 13 : 9781601986269
Total Pages : 138 pages
Book Rating : 4.9/5 (862 download)

DOWNLOAD NOW!


Book Synopsis Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems by : Sébastien Bubeck

Download or read book Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems written by Sébastien Bubeck and published by Now Pub. This book was released on 2012 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319712462
Total Pages : 881 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Michelangelo Ceci

Download or read book Machine Learning and Knowledge Discovery in Databases written by Michelangelo Ceci and published by Springer. This book was released on 2017-12-29 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Multi-armed Bandit Problem and Application

Download Multi-armed Bandit Problem and Application PDF Online Free

Author :
Publisher : Djallel Bouneffouf
ISBN 13 :
Total Pages : 234 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Multi-armed Bandit Problem and Application by : Djallel Bouneffouf

Download or read book Multi-armed Bandit Problem and Application written by Djallel Bouneffouf and published by Djallel Bouneffouf. This book was released on 2023-03-14 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems and information retrieval to healthcare and finance. This success is due to its stellar performance combined with attractive properties, such as learning from less feedback. The multiarmed bandit field is currently experiencing a renaissance, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This book aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize the state-of-the-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this burgeoning field.

Bayesian Reinforcement Learning

Download Bayesian Reinforcement Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680830880
Total Pages : 146 pages
Book Rating : 4.8/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Reinforcement Learning by : Mohammad Ghavamzadeh

Download or read book Bayesian Reinforcement Learning written by Mohammad Ghavamzadeh and published by . This book was released on 2015-11-18 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030461335
Total Pages : 819 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Ulf Brefeld

Download or read book Machine Learning and Knowledge Discovery in Databases written by Ulf Brefeld and published by Springer Nature. This book was released on 2020-04-30 with total page 819 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume proceedings LNAI 11906 – 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. The contributions were organized in topical sections named as follows: Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization. Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing. Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.

Decision Making Under Uncertainty

Download Decision Making Under Uncertainty PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262331713
Total Pages : 350 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer

Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Universal Artificial Intelligence

Download Universal Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540268774
Total Pages : 294 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Universal Artificial Intelligence by : Marcus Hutter

Download or read book Universal Artificial Intelligence written by Marcus Hutter and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.

Encyclopedia of Optimization

Download Encyclopedia of Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387747583
Total Pages : 4646 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Optimization by : Christodoulos A. Floudas

Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Bandits in the Roman Empire

Download Bandits in the Roman Empire PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1134337582
Total Pages : 241 pages
Book Rating : 4.1/5 (343 download)

DOWNLOAD NOW!


Book Synopsis Bandits in the Roman Empire by : Thomas Grunewald

Download or read book Bandits in the Roman Empire written by Thomas Grunewald and published by Routledge. This book was released on 2004-07-31 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book studies how the concept of the bandit was taken up and manipulated during the Late Roman Republic and early Empire (2nd c.BC - 3rd c. AD.)

Multi-armed Bandit Allocation Indices

Download Multi-armed Bandit Allocation Indices PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119990211
Total Pages : 233 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Multi-armed Bandit Allocation Indices by : John Gittins

Download or read book Multi-armed Bandit Allocation Indices written by John Gittins and published by John Wiley & Sons. This book was released on 2011-02-18 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, Whittle's restless bandits, and the use of Lagrangian relaxation in the construction and evaluation of index policies. Some of the many varied proofs of the index theorem are discussed along with the insights that they provide. Many contemporary applications are surveyed, and over 150 new references are included. Over the past 40 years the Gittins index has helped theoreticians and practitioners to address a huge variety of problems within chemometrics, economics, engineering, numerical analysis, operational research, probability, statistics and website design. This new edition will be an important resource for others wishing to use this approach.

Stopped Random Walks

Download Stopped Random Walks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475719922
Total Pages : 208 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Stopped Random Walks by : Allan Gut

Download or read book Stopped Random Walks written by Allan Gut and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.

Bandit problems

Download Bandit problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401537119
Total Pages : 283 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Bandit problems by : Donald A. Berry

Download or read book Bandit problems written by Donald A. Berry and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our purpose in writing this monograph is to give a comprehensive treatment of the subject. We define bandit problems and give the necessary foundations in Chapter 2. Many of the important results that have appeared in the literature are presented in later chapters; these are interspersed with new results. We give proofs unless they are very easy or the result is not used in the sequel. We have simplified a number of arguments so many of the proofs given tend to be conceptual rather than calculational. All results given have been incorporated into our style and notation. The exposition is aimed at a variety of types of readers. Bandit problems and the associated mathematical and technical issues are developed from first principles. Since we have tried to be comprehens ive the mathematical level is sometimes advanced; for example, we use measure-theoretic notions freely in Chapter 2. But the mathema tically uninitiated reader can easily sidestep such discussion when it occurs in Chapter 2 and elsewhere. We have tried to appeal to graduate students and professionals in engineering, biometry, econ omics, management science, and operations research, as well as those in mathematics and statistics. The monograph could serve as a reference for professionals or as a telA in a semester or year-long graduate level course.

Prediction, Learning, and Games

Download Prediction, Learning, and Games PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 113945482X
Total Pages : 4 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Prediction, Learning, and Games by : Nicolo Cesa-Bianchi

Download or read book Prediction, Learning, and Games written by Nicolo Cesa-Bianchi and published by Cambridge University Press. This book was released on 2006-03-13 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.