Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Theory And Applications For Advanced Text Mining
Download Theory And Applications For Advanced Text Mining full books in PDF, epub, and Kindle. Read online Theory And Applications For Advanced Text Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theory and Applications for Advanced Text Mining by : Shigeaki Sakurai
Download or read book Theory and Applications for Advanced Text Mining written by Shigeaki Sakurai and published by BoD – Books on Demand. This book was released on 2012-11-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields.
Download or read book Text Mining written by Michael W. Berry and published by John Wiley & Sons. This book was released on 2010-02-25 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text Mining: Applications and Theory presents the state-of-the-art algorithms for text mining from both the academic and industrial perspectives. The contributors span several countries and scientific domains: universities, industrial corporations, and government laboratories, and demonstrate the use of techniques from machine learning, knowledge discovery, natural language processing and information retrieval to design computational models for automated text analysis and mining. This volume demonstrates how advancements in the fields of applied mathematics, computer science, machine learning, and natural language processing can collectively capture, classify, and interpret words and their contexts. As suggested in the preface, text mining is needed when “words are not enough.” This book: Provides state-of-the-art algorithms and techniques for critical tasks in text mining applications, such as clustering, classification, anomaly and trend detection, and stream analysis. Presents a survey of text visualization techniques and looks at the multilingual text classification problem. Discusses the issue of cybercrime associated with chatrooms. Features advances in visual analytics and machine learning along with illustrative examples. Is accompanied by a supporting website featuring datasets. Applied mathematicians, statisticians, practitioners and students in computer science, bioinformatics and engineering will find this book extremely useful.
Book Synopsis Text Mining by : Ashok N. Srivastava
Download or read book Text Mining written by Ashok N. Srivastava and published by CRC Press. This book was released on 2009-06-15 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te
Book Synopsis The Text Mining Handbook by : Ronen Feldman
Download or read book The Text Mining Handbook written by Ronen Feldman and published by Cambridge University Press. This book was released on 2007 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description
Book Synopsis Optimization Based Data Mining: Theory and Applications by : Yong Shi
Download or read book Optimization Based Data Mining: Theory and Applications written by Yong Shi and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Download or read book Text Mining with R written by Julia Silge and published by "O'Reilly Media, Inc.". This book was released on 2017-06-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.
Book Synopsis Theory and Applications for Advanced Text Mining by : Berko Arendse
Download or read book Theory and Applications for Advanced Text Mining written by Berko Arendse and published by . This book was released on 2016-04-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining, also referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. The purpose of Text Mining is to process unstructured information, extract meaningful numeric indices from the text, and, thus, make the information contained in the text accessible to the various data mining algorithms. Information can be extracted to derive summaries for the words contained in the documents or to compute summaries for the documents based on the words contained in them. Hence, you can analyze words, clusters of words used in documents, etc., or you could analyze documents and determine similarities between them or how they are related to other variables of interest in the data mining project. Text mining can help an organization derive potentially valuable business insights from text-based content such as word documents, email and postings on social media streams like Facebook, Twitter and LinkedIn. Mining unstructured data with natural language processing (NLP), statistical modeling and machine learning techniques can be challenging, however, because natural language text is often inconsistent. It contains ambiguities caused by inconsistent syntax and semantics, including slang, language specific to vertical industries and age groups, double entendres and sarcasm. Unstructured text is very common, and in fact may represent the majority of information available to a particular research or data mining project. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. This book highlights the theory and applications of advanced text mining techniques..
Book Synopsis Text Processing in Python by : David Mertz
Download or read book Text Processing in Python written by David Mertz and published by Addison-Wesley Professional. This book was released on 2003 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: bull; Demonstrates how Python is the perfect language for text-processing functions. bull; Provides practical pointers and tips that emphasize efficient, flexible, and maintainable approaches to text-processing challenges. bull; Helps programmers develop solutions for dealing with the increasing amounts of data with which we are all inundated.
Book Synopsis Advanced Data Structures by : Suman Saha
Download or read book Advanced Data Structures written by Suman Saha and published by CRC Press. This book was released on 2019-06-28 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced data structures is a core course in Computer Science which most graduate program in Computer Science, Computer Science and Engineering, and other allied engineering disciplines, offer during the first year or first semester of the curriculum. The objective of this course is to enable students to have the much-needed foundation for advanced technical skill, leading to better problem-solving in their respective disciplines. Although the course is running in almost all the technical universities for decades, major changes in the syllabus have been observed due to the recent paradigm shift of computation which is more focused on huge data and internet-based technologies. Majority of the institute has been redefined their course content of advanced data structure to fit the current need and course material heavily relies on research papers because of nonavailability of the redefined text book advanced data structure. To the best of our knowledge well-known textbook on advanced data structure provides only partial coverage of the syllabus. The book offers comprehensive coverage of the most essential topics, including: Part I details advancements on basic data structures, viz., cuckoo hashing, skip list, tango tree and Fibonacci heaps and index files. Part II details data structures of different evolving data domains like special data structures, temporal data structures, external memory data structures, distributed and streaming data structures. Part III elucidates the applications of these data structures on different areas of computer science viz, network, www, DBMS, cryptography, graphics to name a few. The concepts and techniques behind each data structure and their applications have been explained. Every chapter includes a variety of Illustrative Problems pertaining to the data structure(s) detailed, a summary of the technical content of the chapter and a list of Review Questions, to reinforce the comprehension of the concepts. The book could be used both as an introductory or an advanced-level textbook for the advanced undergraduate, graduate and research programmes which offer advanced data structures as a core or an elective course. While the book is primarily meant to serve as a course material for use in the classroom, it could be used as a starting point for the beginner researcher of a specific domain.
Book Synopsis Knowledge-Oriented Applications in Data Mining by : Kimito Funatsu
Download or read book Knowledge-Oriented Applications in Data Mining written by Kimito Funatsu and published by BoD – Books on Demand. This book was released on 2011-01-21 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by 'Data Mining' address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining.
Book Synopsis Data Mining With Decision Trees: Theory And Applications (2nd Edition) by : Oded Z Maimon
Download or read book Data Mining With Decision Trees: Theory And Applications (2nd Edition) written by Oded Z Maimon and published by World Scientific. This book was released on 2014-09-03 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:
Download or read book Text Mining written by Gabe Ignatow and published by SAGE Publications. This book was released on 2016-04-20 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively.
Book Synopsis Trends of Data Science and Applications by : Siddharth Swarup Rautaray
Download or read book Trends of Data Science and Applications written by Siddharth Swarup Rautaray and published by Springer Nature. This book was released on 2021-03-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.
Book Synopsis Mathematical Tools for Data Mining by : Dan A. Simovici
Download or read book Mathematical Tools for Data Mining written by Dan A. Simovici and published by Springer Science & Business Media. This book was released on 2008-08-15 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume was born from the experience of the authors as researchers and educators,whichsuggeststhatmanystudentsofdataminingarehandicapped in their research by the lack of a formal, systematic education in its mat- matics. The data mining literature contains many excellent titles that address the needs of users with a variety of interests ranging from decision making to p- tern investigation in biological data. However, these books do not deal with the mathematical tools that are currently needed by data mining researchers and doctoral students. We felt it timely to produce a book that integrates the mathematics of data mining with its applications. We emphasize that this book is about mathematical tools for data mining and not about data mining itself; despite this, a substantial amount of applications of mathematical c- cepts in data mining are presented. The book is intended as a reference for the working data miner. In our opinion, three areas of mathematics are vital for data mining: set theory,includingpartially orderedsetsandcombinatorics;linear algebra,with its many applications in principal component analysis and neural networks; and probability theory, which plays a foundational role in statistics, machine learning and data mining. Thisvolumeisdedicatedtothestudyofset-theoreticalfoundationsofdata mining. Two further volumes are contemplated that will cover linear algebra and probability theory. The ?rst part of this book, dedicated to set theory, begins with a study of functionsandrelations.Applicationsofthesefundamentalconceptstosuch- sues as equivalences and partitions are discussed. Also, we prepare the ground for the following volumes by discussing indicator functions, ?elds and?-?elds, and other concepts.
Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale
Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Book Synopsis Advanced Number Theory with Applications by : Richard A. Mollin
Download or read book Advanced Number Theory with Applications written by Richard A. Mollin and published by CRC Press. This book was released on 2009-08-26 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Book Synopsis Text Mining and Analysis by : Dr. Goutam Chakraborty
Download or read book Text Mining and Analysis written by Dr. Goutam Chakraborty and published by SAS Institute. This book was released on 2014-11-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data: It's unstructured, it's coming at you fast, and there's lots of it. In fact, the majority of big data is text-oriented, thanks to the proliferation of online sources such as blogs, emails, and social media. However, having big data means little if you can't leverage it with analytics. Now you can explore the large volumes of unstructured text data that your organization has collected with Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS. This hands-on guide to text analytics using SAS provides detailed, step-by-step instructions and explanations on how to mine your text data for valuable insight. Through its comprehensive approach, you'll learn not just how to analyze your data, but how to collect, cleanse, organize, categorize, explore, and interpret it as well. Text Mining and Analysis also features an extensive set of case studies, so you can see examples of how the applications work with real-world data from a variety of industries. Text analytics enables you to gain insights about your customers' behaviors and sentiments. Leverage your organization's text data, and use those insights for making better business decisions with Text Mining and Analysis. This book is part of the SAS Press program.