Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Theory Of Multiple Zeta Values With Applications In Combinatorics
Download The Theory Of Multiple Zeta Values With Applications In Combinatorics full books in PDF, epub, and Kindle. Read online The Theory Of Multiple Zeta Values With Applications In Combinatorics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Theory Of Multiple Zeta Values With Applications In Combinatorics by : Minking Eie
Download or read book The Theory Of Multiple Zeta Values With Applications In Combinatorics written by Minking Eie and published by World Scientific. This book was released on 2013-05-22 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, and numerous interesting identities are produced that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.
Book Synopsis The Theory of Multiple Zeta Values with Applications in Combinatorics by : Minking Eie
Download or read book The Theory of Multiple Zeta Values with Applications in Combinatorics written by Minking Eie and published by World Scientific. This book was released on 2013 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on the theory of multiple zeta values since its birth around 1994. Readers will find that the shuffle products of multiple zeta values are applied to complicated counting problems in combinatorics, producing numerous interesting identities that are ready to be used. This will provide a powerful tool to deal with problems in multiple zeta values, both in evaluations and shuffle relations. The volume will benefit graduate students doing research in number theory.
Book Synopsis $q$-Series with Applications to Combinatorics, Number Theory, and Physics by : Bruce C. Berndt
Download or read book $q$-Series with Applications to Combinatorics, Number Theory, and Physics written by Bruce C. Berndt and published by American Mathematical Soc.. This book was released on 2001 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two Englishmathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions. In 1940, G. H. Hardy described what we now call Ramanujan's famous $ 1\psi 1$ summation theorem as ``a remarkable formula with many parameters.'' This is now one of the fundamental theorems of the subject. Despite humble beginnings,the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of thepapers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.
Book Synopsis Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt by : George E Andrews
Download or read book Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt written by George E Andrews and published by World Scientific. This book was released on 2024-08-19 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.
Book Synopsis Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values by : Jianqiang Zhao
Download or read book Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values written by Jianqiang Zhao and published by World Scientific. This book was released on 2016-03-07 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.
Book Synopsis Periods in Quantum Field Theory and Arithmetic by : José Ignacio Burgos Gil
Download or read book Periods in Quantum Field Theory and Arithmetic written by José Ignacio Burgos Gil and published by Springer Nature. This book was released on 2020-03-14 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
Book Synopsis Zeta Functions, Topology and Quantum Physics by : Takashi Aoki
Download or read book Zeta Functions, Topology and Quantum Physics written by Takashi Aoki and published by Springer Science & Business Media. This book was released on 2008-05-10 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003. The aims of this symposium were to establish mutual understanding and to exchange ideas among researchers working in various fields which have relation to zeta functions and zeta values. We are very happy to add this volume to the series Developments in Mathematics from Springer. In this respect, Professor Krishnaswami Alladi helped us a lot by showing his keen and enthusiastic interest in publishing this volume and by contributing his paper with Alexander Berkovich. We gratefully acknowledge financial support from Kinki University. We would like to thank Professor Megumu Munakata, Vice-Rector of Kinki University, and Professor Nobuki Kawashima, Director of School of Interdisciplinary Studies of Science and Engineering, Kinki Univ- sity, for their interest and support. We also thank John Martindale of Springer for his excellent editorial work.
Book Synopsis Analytic Methods In Number Theory: When Complex Numbers Count by : Wadim Zudilin
Download or read book Analytic Methods In Number Theory: When Complex Numbers Count written by Wadim Zudilin and published by World Scientific. This book was released on 2023-08-22 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is no surprise that arithmetic properties of integral ('whole') numbers are controlled by analytic functions of complex variable. At the same time, the values of analytic functions themselves happen to be interesting numbers, for which we often seek explicit expressions in terms of other 'better known' numbers or try to prove that no such exist. This natural symbiosis of number theory and analysis is centuries old but keeps enjoying new results, ideas and methods.The present book takes a semi-systematic review of analytic achievements in number theory ranging from classical themes about primes, continued fractions, transcendence of π and resolution of Hilbert's seventh problem to some recent developments on the irrationality of the values of Riemann's zeta function, sizes of non-cyclotomic algebraic integers and applications of hypergeometric functions to integer congruences.Our principal goal is to present a variety of different analytic techniques that are used in number theory, at a reasonably accessible — almost popular — level, so that the materials from this book can suit for teaching a graduate course on the topic or for a self-study. Exercises included are of varying difficulty and of varying distribution within the book (some chapters get more than other); they not only help the reader to consolidate their understanding of the material but also suggest directions for further study and investigation. Furthermore, the end of each chapter features brief notes about relevant developments of the themes discussed.
Book Synopsis The Seventh European Conference on Combinatorics, Graph Theory and Applications by : Jaroslav Nešetřil
Download or read book The Seventh European Conference on Combinatorics, Graph Theory and Applications written by Jaroslav Nešetřil and published by Springer Science & Business Media. This book was released on 2014-01-18 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the tradition of EuroComb'01 (Barcelona), Eurocomb'03 (Prague), EuroComb'05 (Berlin), Eurocomb'07 (Seville), Eurocomb'09 (Bordeaux), and Eurocomb'11 (Budapest), this volume covers recent advances in combinatorics and graph theory including applications in other areas of mathematics, computer science and engineering. Topics include, but are not limited to: Algebraic combinatorics, combinatorial geometry, combinatorial number theory, combinatorial optimization, designs and configurations, enumerative combinatorics, extremal combinatorics, ordered sets, random methods, topological combinatorics.
Book Synopsis Topics And Methods In Q-series by : James Mc Laughlin
Download or read book Topics And Methods In Q-series written by James Mc Laughlin and published by World Scientific. This book was released on 2017-09-22 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.
Book Synopsis Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis by : Helmut Maier
Download or read book Recent Progress On Topics Of Ramanujan Sums And Cotangent Sums Associated With The Riemann Hypothesis written by Helmut Maier and published by World Scientific. This book was released on 2021-12-28 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, we study recent results on some categories of trigonometric/exponential sums along with various of their applications in Mathematical Analysis and Analytic Number Theory. Through the two chapters of this monograph, we wish to highlight the applicability and breadth of techniques of trigonometric/exponential sums in various problems focusing on the interplay of Mathematical Analysis and Analytic Number Theory. We wish to stress the point that the goal is not only to prove the desired results, but also to present a plethora of intermediate Propositions and Corollaries investigating the behaviour of such sums, which can also be applied in completely different problems and settings than the ones treated within this monograph.In the present work we mainly focus on the applications of trigonometric/exponential sums in the study of Ramanujan sums — which constitute a very classical domain of research in Number Theory — as well as the study of certain cotangent sums with a wide range of applications, especially in the study of Dedekind sums and a facet of the research conducted on the Riemann Hypothesis. For example, in our study of the cotangent sums treated within the second chapter, the methods and techniques employed reveal unexpected connections with independent and very interesting problems investigated in the past by R de la Bretèche and G Tenenbaum on trigonometric series, as well as by S Marmi, P Moussa and J-C Yoccoz on Dynamical Systems.Overall, a reader who has mastered fundamentals of Mathematical Analysis, as well as having a working knowledge of Classical and Analytic Number Theory, will be able to gradually follow all the parts of the monograph. Therefore, the present monograph will be of interest to advanced undergraduate and graduate students as well as researchers who wish to be informed on the latest developments on the topics treated.
Book Synopsis Modular And Automorphic Forms & Beyond by : Hossein Movasati
Download or read book Modular And Automorphic Forms & Beyond written by Hossein Movasati and published by World Scientific. This book was released on 2021-10-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.
Download or read book Number Theory written by Wenpeng Zhang and published by Springer Science & Business Media. This book was released on 2006-06-05 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects survey and research papers on various topics in number theory. Although the topics and descriptive details appear varied, they are unified by two underlying principles: first, readability, and second, a smooth transition from traditional approaches to modern ones. Thus, on one hand, the traditional approach is presented in great detail, and on the other, the modernization of the methods in number theory is elaborated.
Book Synopsis Computational and Analytical Mathematics by : David H. Bailey
Download or read book Computational and Analytical Mathematics written by David H. Bailey and published by Springer Science & Business Media. This book was released on 2013-09-15 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research of Jonathan Borwein has had a profound impact on optimization, functional analysis, operations research, mathematical programming, number theory, and experimental mathematics. Having authored more than a dozen books and more than 300 publications, Jonathan Borwein is one of the most productive Canadian mathematicians ever. His research spans pure, applied, and computational mathematics as well as high performance computing, and continues to have an enormous impact: MathSciNet lists more than 2500 citations by more than 1250 authors, and Borwein is one of the 250 most cited mathematicians of the period 1980-1999. He has served the Canadian Mathematics Community through his presidency (2000–02) as well as his 15 years of editing the CMS book series. Jonathan Borwein’s vision and initiative have been crucial in initiating and developing several institutions that provide support for researchers with a wide range of scientific interests. A few notable examples include the Centre for Experimental and Constructive Mathematics and the IRMACS Centre at Simon Fraser University, the Dalhousie Distributed Research Institute at Dalhousie University, the Western Canada Research Grid, and the Centre for Computer Assisted Research Mathematics and its Applications, University of Newcastle. The workshops that were held over the years in Dr. Borwein’s honor attracted high-caliber scientists from a wide range of mathematical fields. This present volume is an outgrowth of the workshop on ‘Computational and Analytical Mathematics’ held in May 2011 in celebration of Dr. Borwein’s 60th Birthday. The collection contains various state-of-the-art research manuscripts and surveys presenting contributions that have risen from the conference, and is an excellent opportunity to survey state-of-the-art research and discuss promising research directions and approaches.
Book Synopsis Algebra and Applications 2 by : Abdenacer Makhlouf
Download or read book Algebra and Applications 2 written by Abdenacer Makhlouf and published by John Wiley & Sons. This book was released on 2021-12-29 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored. Algebra and Applications 2 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.
Book Synopsis Zeta and q-Zeta Functions and Associated Series and Integrals by : Hari M Srivastava
Download or read book Zeta and q-Zeta Functions and Associated Series and Integrals written by Hari M Srivastava and published by Elsevier. This book was released on 2011-10-11 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. - Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions
Download or read book Number Theory written by Takashi Aoki and published by World Scientific. This book was released on 2010 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory. Kitaoka's paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning's paper introduces a new direction of research on analytic number theory ? quantitative theory of some surfaces and Bruedern et al's paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms ? Kohnen's paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu's paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al's paper gives a very thorough survey on functional relations of root system zeta-functions, Hoshi?Miyake's paper is a continuation of Miyake's long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia's paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura's paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers.Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students.