Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107043468
Total Pages : 341 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Anthony D. Joseph

Download or read book Adversarial Machine Learning written by Anthony D. Joseph and published by Cambridge University Press. This book was released on 2019-02-21 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Advances in Neural Information Processing Systems 13

Download Advances in Neural Information Processing Systems 13 PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262122412
Total Pages : 1136 pages
Book Rating : 4.1/5 (224 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Information Processing Systems 13 by : Todd K. Leen

Download or read book Advances in Neural Information Processing Systems 13 written by Todd K. Leen and published by MIT Press. This book was released on 2001 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 2000 Neural Information Processing Systems (NIPS) Conference.The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.

Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Download Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030986616
Total Pages : 1981 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging by : Ke Chen

Download or read book Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging written by Ke Chen and published by Springer Nature. This book was released on 2023-02-24 with total page 1981 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.

Graph Representation Learning

Download Graph Representation Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015886
Total Pages : 141 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Lie Group Machine Learning

Download Lie Group Machine Learning PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110499509
Total Pages : 534 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Lie Group Machine Learning by : Fanzhang Li

Download or read book Lie Group Machine Learning written by Fanzhang Li and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains deep learning concepts and derives semi-supervised learning and nuclear learning frameworks based on cognition mechanism and Lie group theory. Lie group machine learning is a theoretical basis for brain intelligence, Neuromorphic learning (NL), advanced machine learning, and advanced artifi cial intelligence. The book further discusses algorithms and applications in tensor learning, spectrum estimation learning, Finsler geometry learning, Homology boundary learning, and prototype theory. With abundant case studies, this book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artifi cial intelligence, machine learning, automation, mathematics, management science, cognitive science, financial management, and data analysis. In addition, this text can be used as the basis for teaching the principles of machine learning. Li Fanzhang is professor at the Soochow University, China. He is director of network security engineering laboratory in Jiangsu Province and is also the director of the Soochow Institute of industrial large data. He published more than 200 papers, 7 academic monographs, and 4 textbooks. Zhang Li is professor at the School of Computer Science and Technology of the Soochow University. She published more than 100 papers in journals and conferences, and holds 23 patents. Zhang Zhao is currently an associate professor at the School of Computer Science and Technology of the Soochow University. He has authored and co-authored more than 60 technical papers.

Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies

Download Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309496098
Total Pages : 83 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies by : National Academies of Sciences, Engineering, and Medicine

Download or read book Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-08-22 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.

Foundations of Data Science

Download Foundations of Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108617360
Total Pages : 433 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Data Science by : Avrim Blum

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Optimal Transport

Download Optimal Transport PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540710507
Total Pages : 970 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport by : Cédric Villani

Download or read book Optimal Transport written by Cédric Villani and published by Springer Science & Business Media. This book was released on 2008-10-26 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.

Predicting Structured Data

Download Predicting Structured Data PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262026171
Total Pages : 361 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Predicting Structured Data by : Neural Information Processing Systems Foundation

Download or read book Predicting Structured Data written by Neural Information Processing Systems Foundation and published by MIT Press. This book was released on 2007 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

Linguistic Geometry

Download Linguistic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461544394
Total Pages : 403 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Linguistic Geometry by : Boris Stilman

Download or read book Linguistic Geometry written by Boris Stilman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linguistic Geometry: From Search to Construction is the first book of its kind. Linguistic Geometry (LG) is an approach to the construction of mathematical models for large-scale multi-agent systems. A number of such systems, including air/space combat, robotic manufacturing, software re-engineering and Internet cyberwar, can be modeled as abstract board games. These are games with moves that can be represented by the movement of abstract pieces over locations on an abstract board. The purpose of LG is to provide strategies to guide the games' participants to their goals. Traditionally, discovering such strategies required searches in giant game trees. These searches are often beyond the capacity of modern and even conceivable future computers. LG dramatically reduces the size of the search trees, making the problems computationally tractable. LG provides a formalization and abstraction of search heuristics used by advanced experts including chess grandmasters. Essentially, these heuristics replace search with the construction of strategies. To formalize the heuristics, LG employs the theory of formal languages (i.e. formal linguistics), as well as certain geometric structures over an abstract board. The new formal strategies solve problems from different domains far beyond the areas envisioned by the experts. For a number of these domains, Linguistic Geometry yields optimal solutions.

The Shape of Data

Download The Shape of Data PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718503091
Total Pages : 265 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis The Shape of Data by : Colleen M. Farrelly

Download or read book The Shape of Data written by Colleen M. Farrelly and published by No Starch Press. This book was released on 2023-09-12 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application. Whether you’re a mathematician, seasoned data scientist, or marketing professional, you’ll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning. This book’s extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis. In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you’ll explore: Supervised and unsupervised learning algorithms and their application to network data analysis The way distance metrics and dimensionality reduction impact machine learning How to visualize, embed, and analyze survey and text data with topology-based algorithms New approaches to computational solutions, including distributed computing and quantum algorithms

Safe and Trustworthy Machine Learning

Download Safe and Trustworthy Machine Learning PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889714144
Total Pages : 101 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Safe and Trustworthy Machine Learning by : Bhavya Kailkhura

Download or read book Safe and Trustworthy Machine Learning written by Bhavya Kailkhura and published by Frontiers Media SA. This book was released on 2021-10-29 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Adversarial Learning and Secure AI

Download Adversarial Learning and Secure AI PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009315676
Total Pages : 375 pages
Book Rating : 4.0/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Learning and Secure AI by : David J. Miller

Download or read book Adversarial Learning and Secure AI written by David J. Miller and published by Cambridge University Press. This book was released on 2023-08-31 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first textbook on adversarial machine learning, including both attacks and defenses, background material, and hands-on student projects.

Computational Optimal Transport

Download Computational Optimal Transport PDF Online Free

Author :
Publisher : Foundations and Trends(r) in M
ISBN 13 : 9781680835502
Total Pages : 272 pages
Book Rating : 4.8/5 (355 download)

DOWNLOAD NOW!


Book Synopsis Computational Optimal Transport by : Gabriel Peyre

Download or read book Computational Optimal Transport written by Gabriel Peyre and published by Foundations and Trends(r) in M. This book was released on 2019-02-12 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.

Discrete Geometry and Mathematical Morphology

Download Discrete Geometry and Mathematical Morphology PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030766578
Total Pages : 553 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Discrete Geometry and Mathematical Morphology by : Joakim Lindblad

Download or read book Discrete Geometry and Mathematical Morphology written by Joakim Lindblad and published by Springer Nature. This book was released on 2021-05-15 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First IAPR International Conference on Discrete Geometry and Mathematical Morphology, DGMM 2021, which was held during May 24-27, 2021, in Uppsala, Sweden. The conference was created by joining the International Conference on Discrete Geometry for computer Imagery, DGCI, with the International Symposium on Mathematical Morphology, ISMM. The 36 papers included in this volume were carefully reviewed and selected from 59 submissions. They were organized in topical sections as follows: applications in image processing, computer vision, and pattern recognition; discrete and combinatorial topology; discrete geometry - models, transforms, visualization; discrete tomography and inverse problems; hierarchical and graph-based models, analysis and segmentation; learning-based approaches to mathematical morphology; multivariate and PDE-based mathematical morphology, morphological filtering. The book also contains 3 invited keynote papers.