Errors-in-Variables Methods in System Identification

Download Errors-in-Variables Methods in System Identification PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319750011
Total Pages : 495 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Errors-in-Variables Methods in System Identification by : Torsten Söderström

Download or read book Errors-in-Variables Methods in System Identification written by Torsten Söderström and published by Springer. This book was released on 2018-04-07 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of the different errors-in-variables (EIV) methods that can be used for system identification. Readers will explore the properties of an EIV problem. Such problems play an important role when the purpose is the determination of the physical laws that describe the process, rather than the prediction or control of its future behaviour. EIV problems typically occur when the purpose of the modelling is to get physical insight into a process. Identifiability of the model parameters for EIV problems is a non-trivial issue, and sufficient conditions for identifiability are given. The author covers various modelling aspects which, taken together, can find a solution, including the characterization of noise properties, extension to multivariable systems, and continuous-time models. The book finds solutions that are constituted of methods that are compatible with a set of noisy data, which traditional approaches to solutions, such as (total) least squares, do not find. A number of identification methods for the EIV problem are presented. Each method is accompanied with a detailed analysis based on statistical theory, and the relationship between the different methods is explained. A multitude of methods are covered, including: instrumental variables methods; methods based on bias-compensation; covariance matching methods; and prediction error and maximum-likelihood methods. The book shows how many of the methods can be applied in either the time or the frequency domain and provides special methods adapted to the case of periodic excitation. It concludes with a chapter specifically devoted to practical aspects and user perspectives that will facilitate the transfer of the theoretical material to application in real systems. Errors-in-Variables Methods in System Identification gives readers the possibility of recovering true system dynamics from noisy measurements, while solving over-determined systems of equations, making it suitable for statisticians and mathematicians alike. The book also acts as a reference for researchers and computer engineers because of its detailed exploration of EIV problems.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471660957
Total Pages : 644 pages
Book Rating : 4.4/5 (716 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Rik Pintelon

Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857295225
Total Pages : 334 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Karel J. Keesman

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

System Identification with Quantized Observations

Download System Identification with Quantized Observations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817649565
Total Pages : 317 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis System Identification with Quantized Observations by : Le Yi Wang

Download or read book System Identification with Quantized Observations written by Le Yi Wang and published by Springer Science & Business Media. This book was released on 2010-05-18 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. System Identification with Quantized Observations is an excellent resource for graduate students, systems theorists, control engineers, applied mathematicians, as well as practitioners who use identification algorithms in their work.

System Identification (SYSID '03)

Download System Identification (SYSID '03) PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 9780080437095
Total Pages : 2080 pages
Book Rating : 4.4/5 (37 download)

DOWNLOAD NOW!


Book Synopsis System Identification (SYSID '03) by : Paul Van Den Hof

Download or read book System Identification (SYSID '03) written by Paul Van Den Hof and published by Elsevier. This book was released on 2004-06-29 with total page 2080 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.

Identification of Dynamic Systems

Download Identification of Dynamic Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540871552
Total Pages : 705 pages
Book Rating : 4.8/5 (715 download)

DOWNLOAD NOW!


Book Synopsis Identification of Dynamic Systems by : Rolf Isermann

Download or read book Identification of Dynamic Systems written by Rolf Isermann and published by Springer. This book was released on 2011-04-08 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

Identification and System Parameter Estimation 1982

Download Identification and System Parameter Estimation 1982 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483165787
Total Pages : 869 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Identification and System Parameter Estimation 1982 by : G. A. Bekey

Download or read book Identification and System Parameter Estimation 1982 written by G. A. Bekey and published by Elsevier. This book was released on 2016-06-06 with total page 869 pages. Available in PDF, EPUB and Kindle. Book excerpt: Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.

Nonlinear System Identification

Download Nonlinear System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119943590
Total Pages : 611 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear System Identification by : Stephen A. Billings

Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-09-23 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

Nonlinear System Identification

Download Nonlinear System Identification PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118535553
Total Pages : 611 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear System Identification by : Stephen A. Billings

Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

Principles of System Identification

Download Principles of System Identification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 143989602X
Total Pages : 881 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Principles of System Identification by : Arun K. Tangirala

Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397

Identification of Linear Systems

Download Identification of Linear Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080912567
Total Pages : 353 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Identification of Linear Systems by : J. Schoukens

Download or read book Identification of Linear Systems written by J. Schoukens and published by Elsevier. This book was released on 2014-06-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.

System Identification

Download System Identification PDF Online Free

Author :
Publisher : Pearson Education
ISBN 13 : 0132440539
Total Pages : 875 pages
Book Rating : 4.1/5 (324 download)

DOWNLOAD NOW!


Book Synopsis System Identification by : Lennart Ljung

Download or read book System Identification written by Lennart Ljung and published by Pearson Education. This book was released on 1998-12-29 with total page 875 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

Mastering System Identification in 100 Exercises

Download Mastering System Identification in 100 Exercises PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118218507
Total Pages : 285 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Mastering System Identification in 100 Exercises by : Johan Schoukens

Download or read book Mastering System Identification in 100 Exercises written by Johan Schoukens and published by John Wiley & Sons. This book was released on 2012-04-02 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.

Bayesian Real-Time System Identification

Download Bayesian Real-Time System Identification PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819905931
Total Pages : 286 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Real-Time System Identification by : Ke Huang

Download or read book Bayesian Real-Time System Identification written by Ke Huang and published by Springer Nature. This book was released on 2023-03-20 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces some recent developments in Bayesian real-time system identification. It contains two different perspectives on data processing for system identification, namely centralized and distributed. A centralized Bayesian identification framework is presented to address challenging problems of real-time parameter estimation, which covers outlier detection, system, and noise parameters tracking. Besides, real-time Bayesian model class selection is introduced to tackle model misspecification problem. On the other hand, a distributed Bayesian identification framework is presented to handle asynchronous data and multiple outlier corrupted data. This book provides sufficient background to follow Bayesian methods for solving real-time system identification problems in civil and other engineering disciplines. The illustrative examples allow the readers to quickly understand the algorithms and associated applications. This book is intended for graduate students and researchers in civil and mechanical engineering. Practitioners can also find useful reference guide for solving engineering problems.

Subspace Identification for Linear Systems

Download Subspace Identification for Linear Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461304652
Total Pages : 263 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Subspace Identification for Linear Systems by : Peter van Overschee

Download or read book Subspace Identification for Linear Systems written by Peter van Overschee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.

Modeling, Estimation and Control of Systems with Uncertainty

Download Modeling, Estimation and Control of Systems with Uncertainty PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461204437
Total Pages : 478 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Modeling, Estimation and Control of Systems with Uncertainty by : G.B. DiMasi

Download or read book Modeling, Estimation and Control of Systems with Uncertainty written by G.B. DiMasi and published by Springer Science & Business Media. This book was released on 2013-03-12 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers that have been presented at the Conference on Modeling and Control of Uncertain Systems held in Sopron, Hungary on September 3-7, 1990, organised within the framework of the activities of the System and Decision Sciences Program of IIASA - the International Institute for Applied Systems Analysis. The importance of the subject has drawn the attention of researchers all over the world since several years. In fact, in most actual applications the knowledge about the system under investigation presents aspects of uncertainty due to measurement errors or poor understanding of the rele vant underlying mechanisms. For this reason models that take into account these intrinsic uncertainties have been used and techniques for the analysis of their behavior as well as for their estimation and control have been devel oped. The main ways to deal with uncertainty consist in its description by stochastic processes or in terms of set-valued dynamics and this volume col lects relevant contributions in both directions. However, in order to avoid undesirable distinctions between these approaches, but on the contrary to stress the unity of ideas, we decided to organize the papers according to the alphabetical order of their authors. We should like to take this opportunity to thank IIASA for supporting the Conference and the Hungarian National Member Organization for the kind hospitality in Sopron. Finally we would like to express our gratitude to Ms. Donna Huchthausen for her valuable secretarial assistance. Vienna, February 20, 1991 GIOVANNI B.

Filtering and System Identification

Download Filtering and System Identification PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9781107405028
Total Pages : 0 pages
Book Rating : 4.4/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Filtering and System Identification by : Michel Verhaegen

Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2012-07-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.