Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Studies In Logic And The Foundations Of Mathematics
Download Studies In Logic And The Foundations Of Mathematics full books in PDF, epub, and Kindle. Read online Studies In Logic And The Foundations Of Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Handbook of Proof Theory by : S.R. Buss
Download or read book Handbook of Proof Theory written by S.R. Buss and published by Elsevier. This book was released on 1998-07-09 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Download or read book Model Theory written by and published by . This book was released on 1973 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Foundations of Mathematics by : Kenneth Kunen
Download or read book The Foundations of Mathematics written by Kenneth Kunen and published by . This book was released on 2009 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.
Book Synopsis Harvey Friedman's Research on the Foundations of Mathematics by : L.A. Harrington
Download or read book Harvey Friedman's Research on the Foundations of Mathematics written by L.A. Harrington and published by Elsevier. This book was released on 1985-11-01 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses various aspects of Harvey Friedman's research in the foundations of mathematics over the past fifteen years. It should appeal to a wide audience of mathematicians, computer scientists, and mathematically oriented philosophers.
Book Synopsis Elements of Mathematical Logic by : Georg Kreisel
Download or read book Elements of Mathematical Logic written by Georg Kreisel and published by Elsevier. This book was released on 1967 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Computability, Complexity, Logic by : E. Börger
Download or read book Computability, Complexity, Logic written by E. Börger and published by Elsevier. This book was released on 1989-07-01 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems.The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes and classical aspects of these areas, the subject matter has been selected to give priority throughout to the new aspects of traditional questions, results and methods which have developed from the needs or knowledge of computer science and particularly of complexity theory.It is both a textbook for introductory courses in the above-mentioned disciplines as well as a monograph in which further results of new research are systematically presented and where an attempt is made to make explicit the connections and analogies between a variety of concepts and constructions.
Book Synopsis Equivalents of the Axiom of Choice by : Herman Rubin
Download or read book Equivalents of the Axiom of Choice written by Herman Rubin and published by Elsevier. This book was released on 1963 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Logical Foundations of Mathematics by : William S. Hatcher
Download or read book The Logical Foundations of Mathematics written by William S. Hatcher and published by Elsevier. This book was released on 2014-05-09 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.
Book Synopsis Abstract Set Theory by : Abraham Adolf Fraenkel
Download or read book Abstract Set Theory written by Abraham Adolf Fraenkel and published by . This book was released on 1968 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Realizability written by Jaap van Oosten and published by Elsevier. This book was released on 2008-04-10 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at starting researchers in the field, Realizability gives a rigorous, yet reasonable introduction to the basic concepts of a field which has passed several successive phases of abstraction. Material from previously unpublished sources such as Ph.D. theses, unpublished papers, etc. has been molded into one comprehensive presentation of the subject area.- The first book to date on this subject area- Provides an clear introduction to Realizability with a comprehensive bibliography- Easy to read and mathematically rigorous- Written by an expert in the field
Book Synopsis Lectures on the Curry-Howard Isomorphism by : Morten Heine Sørensen
Download or read book Lectures on the Curry-Howard Isomorphism written by Morten Heine Sørensen and published by Elsevier. This book was released on 2006-07-04 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance,minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc.The isomorphism has many aspects, even at the syntactic level:formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc.But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transformsproofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq).This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic.Key features- The Curry-Howard Isomorphism treated as common theme- Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics- Thorough study of the connection between calculi and logics- Elaborate study of classical logics and control operators- Account of dialogue games for classical and intuitionistic logic- Theoretical foundations of computer-assisted reasoning· The Curry-Howard Isomorphism treated as the common theme.· Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics.· Elaborate study of classical logics and control operators.· Account of dialogue games for classical and intuitionistic logic.· Theoretical foundations of computer-assisted reasoning
Book Synopsis Foundations of Logic and Mathematics by : Yves Nievergelt
Download or read book Foundations of Logic and Mathematics written by Yves Nievergelt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Book Synopsis Many-Dimensional Modal Logics: Theory and Applications by : A. Kurucz
Download or read book Many-Dimensional Modal Logics: Theory and Applications written by A. Kurucz and published by Elsevier. This book was released on 2003-10-21 with total page 767 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.Key Features:• Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science• Written by internationally leading researchers in the field of pure and applied logic• Combines mathematical theory of modal logic and applications in artificial intelligence and computer science• Numerous open problems for further research• Well illustrated with pictures and tables
Book Synopsis Undecidable Theories by : Alfred Tarski
Download or read book Undecidable Theories written by Alfred Tarski and published by Dover Books on Mathematics. This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-known book by the famed logician consists of three treatises: A General Method in Proofs of Undecidability, Undecidability and Essential Undecidability in Mathematics, and Undecidability of the Elementary Theory of Groups. 1953 edition.
Book Synopsis Mathematical Logic by : H.-D. Ebbinghaus
Download or read book Mathematical Logic written by H.-D. Ebbinghaus and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.
Download or read book Mathematical Logic written by Wei Li and published by Springer Science & Business Media. This book was released on 2010-02-26 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Book Synopsis Intuitionism an Introduction by : Arend Heyting
Download or read book Intuitionism an Introduction written by Arend Heyting and published by . This book was released on 1971 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: