Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistics A Foundation For Analysis
Download Statistics A Foundation For Analysis full books in PDF, epub, and Kindle. Read online Statistics A Foundation For Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Biostatistics written by Wayne W. Daniel and published by Wiley. This book was released on 2018-11-13 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to analyze and interpret enormous amounts of data has become a prerequisite for success in allied healthcare and the health sciences. Now in its 11th edition, Biostatistics: A Foundation for Analysis in the Health Sciences continues to offer in-depth guidance toward biostatistical concepts, techniques, and practical applications in the modern healthcare setting. Comprehensive in scope yet detailed in coverage, this text helps students understand—and appropriately use—probability distributions, sampling distributions, estimation, hypothesis testing, variance analysis, regression, correlation analysis, and other statistical tools fundamental to the science and practice of medicine. Clearly-defined pedagogical tools help students stay up-to-date on new material, and an emphasis on statistical software allows faster, more accurate calculation while putting the focus on the underlying concepts rather than the math. Students develop highly relevant skills in inferential and differential statistical techniques, equipping them with the ability to organize, summarize, and interpret large bodies of data. Suitable for both graduate and advanced undergraduate coursework, this text retains the rigor required for use as a professional reference.
Book Synopsis The Foundations of Statistics: A Simulation-based Approach by : Shravan Vasishth
Download or read book The Foundations of Statistics: A Simulation-based Approach written by Shravan Vasishth and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research — they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. ”Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended.” Harald Baayen, Professor of Linguistics, University of Alberta, Canada ”By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book’s coverage.” Colin Phillips, Professor of Linguistics, University of Maryland, USA
Book Synopsis Mathematical Foundations for Data Analysis by : Jeff M. Phillips
Download or read book Mathematical Foundations for Data Analysis written by Jeff M. Phillips and published by Springer Nature. This book was released on 2021-03-29 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Book Synopsis Statistical Foundations, Reasoning and Inference by : Göran Kauermann
Download or read book Statistical Foundations, Reasoning and Inference written by Göran Kauermann and published by Springer Nature. This book was released on 2021-09-30 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Book Synopsis Foundations of Statistics for Data Scientists by : Alan Agresti
Download or read book Foundations of Statistics for Data Scientists written by Alan Agresti and published by CRC Press. This book was released on 2021-11-22 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.
Download or read book Basic Biostatistics written by Gerstman and published by Jones & Bartlett Publishers. This book was released on 2014-02-07 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Biostatistics is a concise, introductory text that covers biostatistical principles and focuses on the common types of data encountered in public health and biomedical fields. The text puts equal emphasis on exploratory and confirmatory statistical methods. Sampling, exploratory data analysis, estimation, hypothesis testing, and power and precision are covered through detailed, illustrative examples. The book is organized into three parts: Part I addresses basic concepts and techniques; Part II covers analytic techniques for quantitative response variables; and Part III covers techniques for categorical responses. The Second Edition offers many new exercises as well as an all new chapter on "Poisson Random Variables and the Analysis of Rates." With language, examples, and exercises that are accessible to students with modest mathematical backgrounds, this is the perfect introductory biostatistics text for undergraduates and graduates in various fields of public health. Features: Illustrative, relevant examples and exercises incorporated throughout the book. Answers to odd-numbered exercises provided in the back of the book. (Instructors may requests answers to even-numbered exercises from the publisher. Chapters are intentionally brief and limited in scope to allow for flexibility in the order of coverage. Equal attention is given to manual calculations as well as the use of statistical software such as StaTable, SPSS, and WinPepi. Comprehensive Companion Website with Student and Instructor's Resources.
Book Synopsis Foundations of Applied Statistical Methods by : Hang Lee
Download or read book Foundations of Applied Statistical Methods written by Hang Lee and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a text in methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a self review guidebook for applied researchers or as an introductory statistical methods textbook for students not majoring in statistics. Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination. The author has over twenty years of experience on applying statistical methods to study design and data analysis in collaborative medical research setting as well as on teaching. He received his PhD from University of Southern California Department of Preventive Medicine, received a post-doctoral training at Harvard Department of Biostatistics, has held faculty appointments at UCLA School of Medicine and Harvard Medical School, and currently a biostatistics faculty member at Massachusetts General Hospital and Harvard Medical School in Boston, Massachusetts, USA.
Book Synopsis Statistics and Analysis of Scientific Data by : Massimiliano Bonamente
Download or read book Statistics and Analysis of Scientific Data written by Massimiliano Bonamente and published by Springer. This book was released on 2016-11-08 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: • a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. • a new chapter on the various measures of the mean including logarithmic averages. • new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. • a new case study and additional worked examples. • mathematical derivations and theoretical background material have been appropriately marked, to improve the readability of the text. • end-of-chapter summary boxes, for easy reference. As in the first edition, the main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the material. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data, as well as exercises and examples to aid the readers' understanding of the topic.
Book Synopsis Foundations of Agnostic Statistics by : Peter M. Aronow
Download or read book Foundations of Agnostic Statistics written by Peter M. Aronow and published by Cambridge University Press. This book was released on 2019-01-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to modern statistical theory for social and health scientists while invoking minimal modeling assumptions.
Book Synopsis The Art of Data Analysis by : Kristin H. Jarman
Download or read book The Art of Data Analysis written by Kristin H. Jarman and published by John Wiley & Sons. This book was released on 2013-05-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: A friendly and accessible approach to applying statistics in the real world With an emphasis on critical thinking, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics presents fun and unique examples, guides readers through the entire data collection and analysis process, and introduces basic statistical concepts along the way. Leaving proofs and complicated mathematics behind, the author portrays the more engaging side of statistics and emphasizes its role as a problem-solving tool. In addition, light-hearted case studies illustrate the application of statistics to real data analyses, highlighting the strengths and weaknesses of commonly used techniques. Written for the growing academic and industrial population that uses statistics in everyday life, The Art of Data Analysis: How to Answer Almost Any Question Using Basic Statistics highlights important issues that often arise when collecting and sifting through data. Featured concepts include: • Descriptive statistics • Analysis of variance • Probability and sample distributions • Confidence intervals • Hypothesis tests • Regression • Statistical correlation • Data collection • Statistical analysis with graphs Fun and inviting from beginning to end, The Art of Data Analysis is an ideal book for students as well as managers and researchers in industry, medicine, or government who face statistical questions and are in need of an intuitive understanding of basic statistical reasoning.
Book Synopsis Foundations of Statistics by : D.G. Rees
Download or read book Foundations of Statistics written by D.G. Rees and published by CRC Press. This book was released on 1987-09-01 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a through, straightforward first course on basics statistics. Emphasizing the application of theory, it contains 200 fully worked examples and supplies exercises in each chapter-complete with hints and answers.
Book Synopsis Foundations of Data Science by : Avrim Blum
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Book Synopsis Practical Statistics for Data Scientists by : Peter Bruce
Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
Book Synopsis Foundations of Biostatistics by : M. Ataharul Islam
Download or read book Foundations of Biostatistics written by M. Ataharul Islam and published by Springer. This book was released on 2018-06-15 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive guide to essential techniques and methods in biostatistics, addressing the underlying concepts to aid in comprehension. The use of biostatistics techniques has increased manifold in the recent past, due to their suitability for applications in a wide range of problems in various fields. This book helps learners grasp the materials in detail, equipping them to use biostatistics techniques independently and confidently. The book starts with a summary of background materials, followed by methods and techniques. As such, with only minimum guidance from teachers, this book can provide materials for self-learning of biostatistics techniques with a deeper level of understanding. The first two chapters focus on fundamental concepts, sources of data, data types, organization of data, and descriptive statistics, followed by the basic probability concepts, distributions and sampling distributions needed in order to combine descriptive statistics with inferential techniques. Estimation and tests of hypotheses are illustrated in two separate chapters. Important measures of association, linear regression, analysis of variance and logistic regression, and proportional hazards models are then presented systematically, ensuring that the book covers the topics most essential to students and users of biostatistics in connection with a wide range of applications in various fields. The book has been carefully structured, and the content is presented in a sequence covering the essential background in a highly systematic manner, supporting the learning process by presenting theory and applications that complement one another.
Book Synopsis Foundations of Factor Analysis by : Stanley A Mulaik
Download or read book Foundations of Factor Analysis written by Stanley A Mulaik and published by CRC Press. This book was released on 2009-09-25 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a practical, thorough understanding of how factor analysis works, Foundations of Factor Analysis, Second Edition discusses the assumptions underlying the equations and procedures of this method. It also explains the options in commercial computer programs for performing factor analysis and structural equation modeling. This long-awaited e
Book Synopsis Data Analysis and Statistics for Geography, Environmental Science, and Engineering by : Miguel F. Acevedo
Download or read book Data Analysis and Statistics for Geography, Environmental Science, and Engineering written by Miguel F. Acevedo and published by CRC Press. This book was released on 2012-12-07 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain