Computational Genomics with R

Download Computational Genomics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498781861
Total Pages : 463 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Computational Genomics with R by : Altuna Akalin

Download or read book Computational Genomics with R written by Altuna Akalin and published by CRC Press. This book was released on 2020-12-16 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

Download Bioinformatics and Computational Biology Solutions Using R and Bioconductor PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387293620
Total Pages : 478 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics and Computational Biology Solutions Using R and Bioconductor by : Robert Gentleman

Download or read book Bioinformatics and Computational Biology Solutions Using R and Bioconductor written by Robert Gentleman and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

Optimal High-Throughput Screening

Download Optimal High-Throughput Screening PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139498371
Total Pages : 223 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Optimal High-Throughput Screening by : Xiaohua Douglas Zhang

Download or read book Optimal High-Throughput Screening written by Xiaohua Douglas Zhang and published by Cambridge University Press. This book was released on 2011-02-21 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, self-contained and cohesive book focuses on commonly used and recently developed methods for designing and analyzing high-throughput screening (HTS) experiments from a statistically sound basis. Combining ideas from biology, computing and statistics, the author explains experimental designs and analytic methods that are amenable to rigorous analysis and interpretation of RNAi HTS experiments. The opening chapters are carefully presented to be accessible both to biologists with training only in basic statistics and to computational scientists and statisticians with basic biological knowledge. Biologists will see how new experiment designs and rudimentary data-handling strategies for RNAi HTS experiments can improve their results, whereas analysts will learn how to apply recently developed statistical methods to interpret HTS experiments.

Statistical Analysis of Microbiome Data

Download Statistical Analysis of Microbiome Data PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030733513
Total Pages : 349 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Microbiome Data by : Somnath Datta

Download or read book Statistical Analysis of Microbiome Data written by Somnath Datta and published by Springer Nature. This book was released on 2021-10-27 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Compositional Data Analysis

Download Compositional Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470711353
Total Pages : 405 pages
Book Rating : 4.4/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Compositional Data Analysis by : Vera Pawlowsky-Glahn

Download or read book Compositional Data Analysis written by Vera Pawlowsky-Glahn and published by John Wiley & Sons. This book was released on 2011-09-19 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.

Statistical Methods for the Analysis of Genomic Data

Download Statistical Methods for the Analysis of Genomic Data PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039361406
Total Pages : 136 pages
Book Rating : 4.0/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for the Analysis of Genomic Data by : Hui Jiang

Download or read book Statistical Methods for the Analysis of Genomic Data written by Hui Jiang and published by MDPI. This book was released on 2020-12-29 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, technological breakthroughs have greatly enhanced our ability to understand the complex world of molecular biology. Rapid developments in genomic profiling techniques, such as high-throughput sequencing, have brought new opportunities and challenges to the fields of computational biology and bioinformatics. Furthermore, by combining genomic profiling techniques with other experimental techniques, many powerful approaches (e.g., RNA-Seq, Chips-Seq, single-cell assays, and Hi-C) have been developed in order to help explore complex biological systems. As a result of the increasing availability of genomic datasets, in terms of both volume and variety, the analysis of such data has become a critical challenge as well as a topic of great interest. Therefore, statistical methods that address the problems associated with these newly developed techniques are in high demand. This book includes a number of studies that highlight the state-of-the-art statistical methods for the analysis of genomic data and explore future directions for improvement.

Statistical Analysis of Next Generation Sequencing Data

Download Statistical Analysis of Next Generation Sequencing Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319379050
Total Pages : 0 pages
Book Rating : 4.3/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Next Generation Sequencing Data by : Somnath Datta

Download or read book Statistical Analysis of Next Generation Sequencing Data written by Somnath Datta and published by Springer. This book was released on 2016-09-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Gene Quantification

Download Gene Quantification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461241642
Total Pages : 379 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Gene Quantification by : Francois Ferre

Download or read book Gene Quantification written by Francois Ferre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geneticists and molecular biologists have been interested in quantifying genes and their products for many years and for various reasons (Bishop, 1974). Early molecular methods were based on molecular hybridization, and were devised shortly after Marmur and Doty (1961) first showed that denaturation of the double helix could be reversed - that the process of molecular reassociation was exquisitely sequence dependent. Gillespie and Spiegelman (1965) developed a way of using the method to titrate the number of copies of a probe within a target sequence in which the target sequence was fixed to a membrane support prior to hybridization with the probe - typically a RNA. Thus, this was a precursor to many of the methods still in use, and indeed under development, today. Early examples of the application of these methods included the measurement of the copy numbers in gene families such as the ribosomal genes and the immunoglo bulin family. Amplification of genes in tumors and in response to drug treatment was discovered by this method. In the same period, methods were invented for estimating gene num bers based on the kinetics of the reassociation process - the so-called Cot analysis. This method, which exploits the dependence of the rate of reassociation on the concentration of the two strands, revealed the presence of repeated sequences in the DNA of higher eukaryotes (Britten and Kohne, 1968). An adaptation to RNA, Rot analysis (Melli and Bishop, 1969), was used to measure the abundance of RNAs in a mixed population.

Evolution of Translational Omics

Download Evolution of Translational Omics PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309224187
Total Pages : 354 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Evolution of Translational Omics by : Institute of Medicine

Download or read book Evolution of Translational Omics written by Institute of Medicine and published by National Academies Press. This book was released on 2012-09-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Genome Data Analysis

Download Genome Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811319421
Total Pages : 367 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Genome Data Analysis by : Ju Han Kim

Download or read book Genome Data Analysis written by Ju Han Kim and published by Springer. This book was released on 2019-04-30 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook describes recent advances in genomics and bioinformatics and provides numerous examples of genome data analysis that illustrate its relevance to real world problems and will improve the reader’s bioinformatics skills. Basic data preprocessing with normalization and filtering, primary pattern analysis, and machine learning algorithms using R and Python are demonstrated for gene-expression microarrays, genotyping microarrays, next-generation sequencing data, epigenomic data, and biological network and semantic analyses. In addition, detailed attention is devoted to integrative genomic data analysis, including multivariate data projection, gene-metabolic pathway mapping, automated biomolecular annotation, text mining of factual and literature databases, and integrated management of biomolecular databases. The textbook is primarily intended for life scientists, medical scientists, statisticians, data processing researchers, engineers, and other beginners in bioinformatics who are experiencing difficulty in approaching the field. However, it will also serve as a simple guideline for experts unfamiliar with the new, developing subfield of genomic analysis within bioinformatics.

Data Mining for Genomics and Proteomics

Download Data Mining for Genomics and Proteomics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470593407
Total Pages : 348 pages
Book Rating : 4.4/5 (75 download)

DOWNLOAD NOW!


Book Synopsis Data Mining for Genomics and Proteomics by : Darius M. Dziuda

Download or read book Data Mining for Genomics and Proteomics written by Darius M. Dziuda and published by John Wiley & Sons. This book was released on 2010-07-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.

Statistics and Data Analysis for Microarrays Using R and Bioconductor

Download Statistics and Data Analysis for Microarrays Using R and Bioconductor PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439809763
Total Pages : 1036 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Data Analysis for Microarrays Using R and Bioconductor by : Sorin Draghici

Download or read book Statistics and Data Analysis for Microarrays Using R and Bioconductor written by Sorin Draghici and published by CRC Press. This book was released on 2016-04-19 with total page 1036 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on,

Next Generation Sequencing

Download Next Generation Sequencing PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535122401
Total Pages : 466 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Next Generation Sequencing by : Jerzy Kulski

Download or read book Next Generation Sequencing written by Jerzy Kulski and published by BoD – Books on Demand. This book was released on 2016-01-14 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.

Genomic Signal Processing

Download Genomic Signal Processing PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400865263
Total Pages : 314 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Genomic Signal Processing by : Ilya Shmulevich

Download or read book Genomic Signal Processing written by Ilya Shmulevich and published by Princeton University Press. This book was released on 2014-09-08 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathematical definitions and propositions for the main elements of GSP and by paying attention to the validity of models relative to the data. Ilya Shmulevich and Edward Dougherty cover real-world situations and explain their mathematical modeling in relation to systems biology and systems medicine. Genomic Signal Processing makes a major contribution to computational biology, systems biology, and translational genomics by providing a self-contained explanation of the fundamental mathematical issues facing researchers in four areas: classification, clustering, network modeling, and network intervention.

Optimal Bayesian Classification

Download Optimal Bayesian Classification PDF Online Free

Author :
Publisher :
ISBN 13 : 9781510630697
Total Pages : pages
Book Rating : 4.6/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Optimal Bayesian Classification by : Lori A. Dalton

Download or read book Optimal Bayesian Classification written by Lori A. Dalton and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "The most basic problem of engineering is the design of optimal operators. Design takes different forms depending on the random process constituting the scientific model and the operator class of interest. This book treats classification, where the underlying random process is a feature-label distribution, and an optimal operator is a Bayes classifier, which is a classifier minimizing the classification error. With sufficient knowledge we can construct the feature-label distribution and thereby find a Bayes classifier. Rarely, do we possess such knowledge. On the other hand, if we had unlimited data, we could accurately estimate the feature-label distribution and obtain a Bayes classifier. Rarely do we possess sufficient data. The aim of this book is to best use whatever knowledge and data are available to design a classifier. The book takes a Bayesian approach to modeling the feature-label distribution and designs an optimal classifier relative to a posterior distribution governing an uncertainty class of feature-label distributions. In this way it takes full advantage of knowledge regarding the underlying system and the available data. Its origins lie in the need to estimate classifier error when there is insufficient data to hold out test data, in which case an optimal error estimate can be obtained relative to the uncertainty class. A natural next step is to forgo classical ad hoc classifier design and simply find an optimal classifier relative to the posterior distribution over the uncertainty class-this being an optimal Bayesian classifier"--

Computational Methods for the Analysis of Genomic Data and Biological Processes

Download Computational Methods for the Analysis of Genomic Data and Biological Processes PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039437712
Total Pages : 222 pages
Book Rating : 4.0/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for the Analysis of Genomic Data and Biological Processes by : Francisco A. Gómez Vela

Download or read book Computational Methods for the Analysis of Genomic Data and Biological Processes written by Francisco A. Gómez Vela and published by MDPI. This book was released on 2021-02-05 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.

Statistical Genomics

Download Statistical Genomics PDF Online Free

Author :
Publisher : Humana
ISBN 13 : 9781493935765
Total Pages : 0 pages
Book Rating : 4.9/5 (357 download)

DOWNLOAD NOW!


Book Synopsis Statistical Genomics by : Ewy Mathé

Download or read book Statistical Genomics written by Ewy Mathé and published by Humana. This book was released on 2016-03-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume expands on statistical analysis of genomic data by discussing cross-cutting groundwork material, public data repositories, common applications, and representative tools for operating on genomic data. Statistical Genomics: Methods and Protocols is divided into four sections. The first section discusses overview material and resources that can be applied across topics mentioned throughout the book. The second section covers prominent public repositories for genomic data. The third section presents several different biological applications of statistical genomics, and the fourth section highlights software tools that can be used to facilitate ad-hoc analysis and data integration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible analysis protocols, and tips on troubleshooting and avoiding known pitfalls. Through and practical, Statistical Genomics: Methods and Protocols, explores a range of both applications and tools and is ideal for anyone interested in the statistical analysis of genomic data.