Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistical Foundations Reasoning And Inference
Download Statistical Foundations Reasoning And Inference full books in PDF, epub, and Kindle. Read online Statistical Foundations Reasoning And Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Foundations, Reasoning and Inference by : Göran Kauermann
Download or read book Statistical Foundations, Reasoning and Inference written by Göran Kauermann and published by Springer Nature. This book was released on 2021-09-30 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Book Synopsis Statistical Foundations, Reasoning and Inference by : Göran Kauermann
Download or read book Statistical Foundations, Reasoning and Inference written by Göran Kauermann and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan
Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Book Synopsis Foundations and Applications of Statistics by : Randall Pruim
Download or read book Foundations and Applications of Statistics written by Randall Pruim and published by American Mathematical Soc.. This book was released on 2018-04-04 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Book Synopsis Statistical Reasoning with Imprecise Probabilities by : Peter Walley
Download or read book Statistical Reasoning with Imprecise Probabilities written by Peter Walley and published by Chapman and Hall/CRC. This book was released on 1991 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: An examination of topics involved in statistical reasoning with imprecise probabilities. The book discusses assessment and elicitation, extensions, envelopes and decisions, the importance of imprecision, conditional previsions and coherent statistical models.
Book Synopsis The Foundations of Statistics by : Leonard J. Savage
Download or read book The Foundations of Statistics written by Leonard J. Savage and published by Courier Corporation. This book was released on 2012-08-29 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace
Download or read book Statistical and Inductive Inference by Minimum Message Length written by C.S. Wallace and published by Springer Science & Business Media. This book was released on 2005-05-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Book Synopsis Probability Theory and Statistical Inference by : Aris Spanos
Download or read book Probability Theory and Statistical Inference written by Aris Spanos and published by Cambridge University Press. This book was released on 2019-09-19 with total page 787 pages. Available in PDF, EPUB and Kindle. Book excerpt: This empirical research methods course enables informed implementation of statistical procedures, giving rise to trustworthy evidence.
Book Synopsis Statistical Models and Causal Inference by : David A. Freedman
Download or read book Statistical Models and Causal Inference written by David A. Freedman and published by Cambridge University Press. This book was released on 2010 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
Book Synopsis The Role of Mathematics in Evolutionary Theory by : Jun Otsuka
Download or read book The Role of Mathematics in Evolutionary Theory written by Jun Otsuka and published by Cambridge University Press. This book was released on 2019-10-17 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central role of mathematical modeling in modern evolutionary theory has raised a concern as to why and how abstract formulae can say anything about empirical phenomena of evolution. This Element introduces existing philosophical approaches to this problem and proposes a new account according to which evolutionary models are based on causal, and not just mathematical, assumptions. The novel account features causal models both as the Humean 'uniform nature' underlying evolutionary induction and as the organizing framework that integrates mathematical and empirical assumptions into a cohesive network of beliefs that functions together to achieve epistemic goals of evolutionary biology.
Book Synopsis Logic of Statistical Inference by : Ian Hacking
Download or read book Logic of Statistical Inference written by Ian Hacking and published by Cambridge University Press. This book was released on 2016-08-26 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of Ian Hacking's earliest publications, this book showcases his early ideas on the central concepts and questions surrounding statistical reasoning. He explores the basic principles of statistical reasoning and tests them, both at a philosophical level and in terms of their practical consequences for statisticians. Presented in a fresh twenty-first-century series livery, and including a specially commissioned preface written by Jan-Willem Romeijn, illuminating its enduring importance and relevance to philosophical enquiry, Hacking's influential and original work has been revived for a new generation of readers.
Book Synopsis The Foundations of Scientific Inference by : Wesley Salmon
Download or read book The Foundations of Scientific Inference written by Wesley Salmon and published by University of Pittsburgh Pre. This book was released on 1967-09 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Not since Ernest Nagel’s 1939 monograph on the theory of probability has there been a comprehensive elementary survey of the philosophical problems of probablity and induction. This is an authoritative and up-to-date treatment of the subject, and yet it is relatively brief and nontechnical. Hume’s skeptical arguments regarding the justification of induction are taken as a point of departure, and a variety of traditional and contemporary ways of dealing with this problem are considered. The author then sets forth his own criteria of adequacy for interpretations of probability. Utilizing these criteria he analyzes contemporary theories of probability, as well as the older classical and subjective interpretations.
Book Synopsis Error and Inference by : Deborah G. Mayo
Download or read book Error and Inference written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2009-10-26 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although both philosophers and scientists are interested in how to obtain reliable knowledge in the face of error, there is a gap between their perspectives that has been an obstacle to progress. By means of a series of exchanges between the editors and leaders from the philosophy of science, statistics and economics, this volume offers a cumulative introduction connecting problems of traditional philosophy of science to problems of inference in statistical and empirical modelling practice. Philosophers of science and scientific practitioners are challenged to reevaluate the assumptions of their own theories - philosophical or methodological. Practitioners may better appreciate the foundational issues around which their questions revolve and thereby become better 'applied philosophers'. Conversely, new avenues emerge for finally solving recalcitrant philosophical problems of induction, explanation and theory testing.
Download or read book Causality written by Judea Pearl and published by Cambridge University Press. This book was released on 2009-09-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
Download or read book Inferential Models written by Ryan Martin and published by CRC Press. This book was released on 2015-09-25 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaning