Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Generalized Linear Models and Extensions, Second Edition

Download Generalized Linear Models and Extensions, Second Edition PDF Online Free

Author :
Publisher : Stata Press
ISBN 13 : 1597180149
Total Pages : 413 pages
Book Rating : 4.5/5 (971 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Models and Extensions, Second Edition by : James W. Hardin

Download or read book Generalized Linear Models and Extensions, Second Edition written by James W. Hardin and published by Stata Press. This book was released on 2007 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.

Handbook of Latent Variable and Related Models

Download Handbook of Latent Variable and Related Models PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080471269
Total Pages : 458 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Latent Variable and Related Models by :

Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Linear Models with R

Download Linear Models with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439887349
Total Pages : 284 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Linear Models with R by : Julian J. Faraway

Download or read book Linear Models with R written by Julian J. Faraway and published by CRC Press. This book was released on 2016-04-19 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models

Applying Generalized Linear Models

Download Applying Generalized Linear Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 038722730X
Total Pages : 265 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Applying Generalized Linear Models by : James K. Lindsey

Download or read book Applying Generalized Linear Models written by James K. Lindsey and published by Springer Science & Business Media. This book was released on 2008-01-15 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how generalised linear modelling procedures can be used in many different fields, without becoming entangled in problems of statistical inference. The author shows the unity of many of the commonly used models and provides readers with a taste of many different areas, such as survival models, time series, and spatial analysis, and of their unity. As such, this book will appeal to applied statisticians and to scientists having a basic grounding in modern statistics. With many exercises at the end of each chapter, it will equally constitute an excellent text for teaching applied statistics students and non- statistics majors. The reader is assumed to have knowledge of basic statistical principles, whether from a Bayesian, frequentist, or direct likelihood point of view, being familiar at least with the analysis of the simpler normal linear models, regression and ANOVA.

Regression & Linear Modeling

Download Regression & Linear Modeling PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1506302750
Total Pages : 489 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Regression & Linear Modeling by : Jason W. Osborne

Download or read book Regression & Linear Modeling written by Jason W. Osborne and published by SAGE Publications. This book was released on 2016-03-24 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.

Generalized Linear Models

Download Generalized Linear Models PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351445847
Total Pages : 536 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Generalized Linear Models by : P. McCullagh

Download or read book Generalized Linear Models written by P. McCullagh and published by Routledge. This book was released on 2019-01-22 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot

Applied Logistic Regression Analysis

Download Applied Logistic Regression Analysis PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761922087
Total Pages : 130 pages
Book Rating : 4.9/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Applied Logistic Regression Analysis by : Scott Menard

Download or read book Applied Logistic Regression Analysis written by Scott Menard and published by SAGE. This book was released on 2002 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus in this Second Edition is again on logistic regression models for individual level data, but aggregate or grouped data are also considered. The book includes detailed discussions of goodness of fit, indices of predictive efficiency, and standardized logistic regression coefficients, and examples using SAS and SPSS are included. More detailed consideration of grouped as opposed to case-wise data throughout the book Updated discussion of the properties and appropriate use of goodness of fit measures, R-square analogues, and indices of predictive efficiency Discussion of the misuse of odds ratios to represent risk ratios, and of over-dispersion and under-dispersion for grouped data Updated coverage of unordered and ordered polytomous logistic regression models.

Vector Generalized Linear and Additive Models

Download Vector Generalized Linear and Additive Models PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 149392818X
Total Pages : 606 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Vector Generalized Linear and Additive Models by : Thomas W. Yee

Download or read book Vector Generalized Linear and Additive Models written by Thomas W. Yee and published by Springer. This book was released on 2015-09-11 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modelling. Comprising of about half-a-dozen major classes of statistical models, and fortified with necessary infrastructure to make the models more fully operable, the framework allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. However, GLMs are not flexible enough to cope with the demands of practical data analysis. And data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. The methodology here and accompanying software (the extensive VGAM R package) are directed at these limitations and are described comprehensively for the first time in one volume. This book treats distributions and classical models as generalized regression models, and the result is a much broader application base for GLMs and GAMs. The book can be used in senior undergraduate or first-year postgraduate courses on GLMs or categorical data analysis and as a methodology resource for VGAM users. In the second part of the book, the R package VGAM allows readers to grasp immediately applications of the methodology. R code is integrated in the text, and datasets are used throughout. Potential applications include ecology, finance, biostatistics, and social sciences. The methodological contribution of this book stands alone and does not require use of the VGAM package.

Logit and Probit

Download Logit and Probit PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761922421
Total Pages : 108 pages
Book Rating : 4.9/5 (224 download)

DOWNLOAD NOW!


Book Synopsis Logit and Probit by : Vani K. Borooah

Download or read book Logit and Probit written by Vani K. Borooah and published by SAGE. This book was released on 2002 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the social sciences are amenable to analysis using the analytical tools of logit and probit models. This book explains what ordered and multinomial models are and also shows how to apply them to analysing issues in the social sciences.

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Longitudinal and Panel Data

Download Longitudinal and Panel Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521535380
Total Pages : 492 pages
Book Rating : 4.5/5 (353 download)

DOWNLOAD NOW!


Book Synopsis Longitudinal and Panel Data by : Edward W. Frees

Download or read book Longitudinal and Panel Data written by Edward W. Frees and published by Cambridge University Press. This book was released on 2004-08-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.

Statistics in Natural Resources

Download Statistics in Natural Resources PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000637891
Total Pages : 333 pages
Book Rating : 4.0/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Statistics in Natural Resources by : Matthew Russell

Download or read book Statistics in Natural Resources written by Matthew Russell and published by CRC Press. This book was released on 2022-08-19 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: To manage our environment sustainably, professionals must understand the quality and quantity of our natural resources. Statistical analysis provides information that supports management decisions and is universally used across scientific disciplines. Statistics in Natural Resources: Applications with R focuses on the application of statistical analyses in the environmental, agricultural, and natural resources disciplines. This is a book well suited for current or aspiring natural resource professionals who are required to analyze data and perform statistical analyses in their daily work. More seasoned professionals who have previously had a course or two in statistics will also find the content familiar. This text can also serve as a bridge between professionals who understand statistics and want to learn how to perform analyses on natural resources data in R. The primary goal of this book is to learn and apply common statistical methods used in natural resources by using the R programming language. If you dedicate considerable time to this book, you will: Develop analytical and visualization skills for investigating the behavior of agricultural and natural resources data. Become competent in importing, analyzing, and visualizing complex data sets in the R environment. Recode, combine, and restructure data sets for statistical analysis and visualization. Appreciate probability concepts as they apply to environmental problems. Understand common distributions used in statistical applications and inference. Summarize data effectively and efficiently for reporting purposes. Learn the tasks required to perform a variety of statistical hypothesis tests and interpret their results. Understand which modeling frameworks are appropriate for your data and how to interpret predictions. Includes over 130 exercises in R, with solutions available on the book’s website.

Statistical Methods for Overdispersed Count Data

Download Statistical Methods for Overdispersed Count Data PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 008102374X
Total Pages : 194 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Overdispersed Count Data by : Jean-Francois Dupuy

Download or read book Statistical Methods for Overdispersed Count Data written by Jean-Francois Dupuy and published by Elsevier. This book was released on 2018-11-19 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Overdispersed Count Data provides a review of the most recent methods and models for such data, including a description of R functions and packages that allow their implementation. All methods are illustrated on datasets arising in the field of health economics. As several tools have been developed to tackle over-dispersed and zero-inflated data (such as adjustment methods and zero-inflated models), this book covers the topic in a comprehensive and interesting manner. - Includes reading on several levels, including methodology and applications - Presents the state-of-the-art on the most recent zero-inflated regression models - Contains a single dataset that is used as a common thread for illustrating all methodologies - Includes R code that allows the reader to apply methodologies

Conditioning Diagnostics

Download Conditioning Diagnostics PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 : 9780471528890
Total Pages : 0 pages
Book Rating : 4.5/5 (288 download)

DOWNLOAD NOW!


Book Synopsis Conditioning Diagnostics by : David A. Belsley

Download or read book Conditioning Diagnostics written by David A. Belsley and published by Wiley-Interscience. This book was released on 1991-02-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating the research from the author's previous work, Regression Diagnostics, and significant revision and updating, this monograph presents a self-contained treatment of the problems of ill-conditioning and data weaknesses as they affect the least-squares estimation of the linear model, along with extensions to nonlinear models and simultaneous-equations estimators. Also features a substantial amount of new information, including background material and data sets and numerous related elements previously scattered throughout the literature.

Methods and Applications of Longitudinal Data Analysis

Download Methods and Applications of Longitudinal Data Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128014822
Total Pages : 531 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Methods and Applications of Longitudinal Data Analysis by : Xian Liu

Download or read book Methods and Applications of Longitudinal Data Analysis written by Xian Liu and published by Elsevier. This book was released on 2015-09-01 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Statistical Rethinking

Download Statistical Rethinking PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315362619
Total Pages : 488 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Statistical Rethinking by : Richard McElreath

Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.